Example 1
Completion requirements
Example 1 |
The sum of the reciprocals of two consecutive odd integers is \(\frac{24}{143}\). Determine the two integers.
Step 1: Define the variables and expressions being used.
Let \(2x + 1\) represent the first odd integer, and let \(2x + 3\) represent the second consecutive odd integer.
Step 2: Write an equation to represent the problem.
Step 3: Identify any non-permissible values and the lowest common denominator.
NPVs:
LCD: \(143\left(2x + 1\right)\left(2x + 3\right)\)
Step 4: Solve for \(x\).
Because the question states that the numbers are integers, the negative fraction can be ignored.
Step 5: Determine the value of the integers.
The two numbers are:
\(\begin{align}
2x + 1 &= 2\left( 5 \right) + 1 \\
&= 11 \\
\\
2x + 3 &= 2\left( 5 \right) + 3 \\
&= 13 \\
\end{align}\)
Verify:
The two integers are \(11\) and \(13\).
Let \(2x + 1\) represent the first odd integer, and let \(2x + 3\) represent the second consecutive odd integer.
Step 2: Write an equation to represent the problem.
\[\frac{1}{{2x + 1}} + \frac{1}{{2x + 3}} = \frac{{24}}{{143}}\]
Step 3: Identify any non-permissible values and the lowest common denominator.
NPVs:
\[\begin{align}
2x + 1 &\ne 0 \\
x &\ne -\frac{1}{2} \\
\end{align}\]
2x + 1 &\ne 0 \\
x &\ne -\frac{1}{2} \\
\end{align}\]
\[\begin{align}
2x + 3 &\ne 0 \\
x &\ne -\frac{3}{2} \\
\end{align}\]
2x + 3 &\ne 0 \\
x &\ne -\frac{3}{2} \\
\end{align}\]
Step 4: Solve for \(x\).
\[\begin{align}
\left[ {\frac{1}{{{\color{red}\cancel{\color{#444}{2x + 1}}}}}} \right]\left( {143} \right){\color{red}\cancel{\color{#444}{\left(2x + 1\right)}}}\left( {2x + 3} \right) + \left[ {\frac{1}{{{\color{red}\cancel{\color{#444}{2x + 3}}}}}} \right]\left( {143} \right)\left( {2x + 1} \right){\color{red}\cancel{\color{#444}{\left( {2x + 3} \right)}}} &= \left[ {\frac{{24}}{{{\color{red}\cancel{\color{#444}{143}}}}}} \right]\left( {{\color{red}\cancel{\color{#444}{143}}}} \right)\left( {2x + 1} \right)\left( {2x + 3} \right) \\
143\left( {2x + 3} \right) + 143\left( {2x + 1} \right) &= 24\left( {2x + 1} \right)\left( {2x + 3} \right) \\
286x + 429 + 286x + 143 &= 24\left( {4x^2 + 8x + 3} \right) \\
572x + 572 &= 96x^2 + 192x + 72 \\
0 &= 96x^2 - 380x - 500 \\
0 &= 4\left( {24x^2 - 95x - 125} \right) \\
\end{align}\]
\left[ {\frac{1}{{{\color{red}\cancel{\color{#444}{2x + 1}}}}}} \right]\left( {143} \right){\color{red}\cancel{\color{#444}{\left(2x + 1\right)}}}\left( {2x + 3} \right) + \left[ {\frac{1}{{{\color{red}\cancel{\color{#444}{2x + 3}}}}}} \right]\left( {143} \right)\left( {2x + 1} \right){\color{red}\cancel{\color{#444}{\left( {2x + 3} \right)}}} &= \left[ {\frac{{24}}{{{\color{red}\cancel{\color{#444}{143}}}}}} \right]\left( {{\color{red}\cancel{\color{#444}{143}}}} \right)\left( {2x + 1} \right)\left( {2x + 3} \right) \\
143\left( {2x + 3} \right) + 143\left( {2x + 1} \right) &= 24\left( {2x + 1} \right)\left( {2x + 3} \right) \\
286x + 429 + 286x + 143 &= 24\left( {4x^2 + 8x + 3} \right) \\
572x + 572 &= 96x^2 + 192x + 72 \\
0 &= 96x^2 - 380x - 500 \\
0 &= 4\left( {24x^2 - 95x - 125} \right) \\
\end{align}\]
\[\begin{align}
a &= 24,\thinspace b = - 95,\thinspace c = - 125 \\
x &= \frac{{ - b \pm \sqrt {b^2 - 4ac} }}{{2a}} \\
x &= \frac{{ - \left( { - 95} \right) \pm \sqrt {\left( { - 95} \right)^2 - 4\left( {24} \right)\left( { - 125} \right)} }}{{2\left( {24} \right)}} \\
x &= \frac{{95 \pm \sqrt {21\thinspace 025} }}{{48}} \\
x &= \frac{{95 \pm 145}}{{48}} \\
x &= 5, \thinspace -\frac{{25}}{{24}} \\
\end{align}\]
a &= 24,\thinspace b = - 95,\thinspace c = - 125 \\
x &= \frac{{ - b \pm \sqrt {b^2 - 4ac} }}{{2a}} \\
x &= \frac{{ - \left( { - 95} \right) \pm \sqrt {\left( { - 95} \right)^2 - 4\left( {24} \right)\left( { - 125} \right)} }}{{2\left( {24} \right)}} \\
x &= \frac{{95 \pm \sqrt {21\thinspace 025} }}{{48}} \\
x &= \frac{{95 \pm 145}}{{48}} \\
x &= 5, \thinspace -\frac{{25}}{{24}} \\
\end{align}\]
Because the question states that the numbers are integers, the negative fraction can be ignored.
Step 5: Determine the value of the integers.
The two numbers are:
\(\begin{align}
2x + 1 &= 2\left( 5 \right) + 1 \\
&= 11 \\
\\
2x + 3 &= 2\left( 5 \right) + 3 \\
&= 13 \\
\end{align}\)
Verify:
Left Side | Right Side |
---|---|
\[\begin{array}{r} \frac{1}{{11}} + \frac{1}{{13}} \\ \frac{{13}}{{143}} + \frac{{11}}{{143}} \\ \frac{{24}}{{143}} \\ \end{array}\] |
\[\frac{24}{143}\] |
LS = RS |
The two integers are \(11\) and \(13\).