Example  3

Shelly makes and sells jewelery at the local Farmers’ Market. She purchased \(\$75\) worth of supplies to make new bracelets. She plans to keep \(3\) bracelets for her friends and sell the remaining bracelets for a total of \(\$250\). If Shelly wants to make a profit of \(\$12.50\) per bracelet, how many bracelets must she make?


Let \(b\) represent the number of bracelets made.

Cost of making each bracelet \(= \frac{\$75.00}{b}\)

Earnings for each bracelet \(=\frac{\$250.00}{b - 3}\)



Note that Shelly gives away three of her bracelets to friends.

The equation for this question will be:

Profit from each bracelet = earnings from each bracelet \(-\) cost of making each bracelet

\(12.50 = \frac{{250}}{{b - 3}} - \frac{{75}}{b}, \thinspace b \ne 0,\thinspace 3\)

LCD: \(b\left(b - 3\right)\)

\[\begin{align}
 \left( {12.5} \right)\left( b \right)\left( {b - 3} \right) &= \left( {\frac{{250}}{{{\color{red}\cancel{\color{#444}{b - 3}}}}}} \right)\left( b \right){\color{red}\cancel{\color{#444}{\left(b - 3\right)}}} - \left( {\frac{{75}}{{{\color{red}\cancel{\color{#444}{b}}}}}} \right){\color{red}\cancel{\color{#444}{\left(b\right)}}}\left( {b - 3} \right) \\
 12.5b\left( {b - 3} \right) &= 250b - 75\left( {b - 3} \right) \\
 12.5b^2 - 37.5b &= 250b - 75b + 225 \\
 12.5b^2 - 212.5b - 225 &= 0 \\
 12.5\left( {b^2 - 17 - 18} \right) &= 0 \\
 \left( {b - 18} \right)\left( {b + 1} \right) &= 0 \\
 b &= 18 \thinspace {\rm{and}} \thinspace b = - 1 \\
 \end{align}\]


Note that Shelly cannot make a negative number of bracelets; therefore, \(b = -1\) is not a possible solution.

Verify for \(b = 18\).

Left Side Right Side
\(12.50\)
\[\begin{array}{l}
 \frac{{250}}{{b - 3}} - \frac{{75}}{b} \\
 \frac{{250}}{{\left( {18} \right) - 3}} - \frac{{75}}{{\left( {18} \right)}} \\
 \frac{{250}}{{15}} - \frac{{25}}{6} \\
 \frac{{100}}{6} - \frac{{25}}{6} \\
 \frac{{75}}{6} \\
 12.50 \\
 \end{array}\]

\(\hspace{25pt}\)LS = RS

Shelly will need to make \(18\) bracelets in order to make a profit of \(\$12.50\) per bracelet.