The speed at which Heather runs the \(100 \thinspace \rm{m}\) sprint is consistent. The time it takes her to complete the race depends upon the headwind she is working against. With a headwind of \(2 \thinspace \rm{m/s}\), it takes Heather \(4\) seconds longer to finish the race than if she has no headwind. To the nearest hundredth, determine Heatherโ€™s average sprint speed, with the headwind, for the \(100 \thinspace \rm{m}\) sprint.


Let \(x\) represent Heather's speed with no headwind.

Direction Distance (km) Speed (km/h) Time heart
No Headwind \(100\) \(x\)
\(\frac{100}{x}\)
Headwind of \(2 \thinspace \rm{m/s}\)
\(100\) \(x - 2\)
\(\frac{100}{x - 2}\)

In this scenario, the headwind time is \(4\) seconds longer than without a headwind.  Therefore, the equation is:

\[\frac{{100}}{x} + 4 = \frac{{100}}{{x - 2}}\]

NPVs: \(x \ne 0, \thinspace 2\)

LCD: \(x(x - 2)\)

\[\begin{align}
 \left( {\frac{{100}}{{{\color{red}\cancel{\color{#444}{x}}}}}} \right)\left( {{\color{red}\cancel{\color{#444}{x}}}} \right)\left( {x - 2} \right) + \left( 4 \right)\left( x \right)\left( {x - 2} \right) &= \left( {\frac{{100}}{{{\color{red}\cancel{\color{#444}{x - 2}}}}}} \right)\left( x \right) {\color{red}\cancel{\color{#444}{\left( {x - 2} \right)}}} \\
 100\left( {x - 2} \right) + 4x\left( {x - 2} \right) &= 100x \\
 100x - 200 + 4x^2 - 8x &= 100x \\
 4x^2 - 8x - 200 &= 0 \\
 4\left( {x^2 - 2x - 50} \right) &= 0 \\
 \end{align}\]

\[\begin{align}
 a &= 1, \thinspace b = - 2, \thinspace c = - 50 \\
 x &= \frac{{ - b \pm \sqrt {b^2 - 4ac} }}{{2a}} \\
 x &= \frac{{ - \left( { - 2} \right) \pm \sqrt {\left( { - 2} \right)^2 - 4\left( 1 \right)\left( { - 50} \right)} }}{{2\left( 1 \right)}} \\
 x &= \frac{{2 \pm \sqrt {204} }}{2} \\
 x &= \frac{{2 \pm 2\sqrt {51} }}{2} \\
 x &= 1 \pm \sqrt {51}  \\
 x &\doteq 8.14 \thinspace {\rm{and}} \thinspace x \doteq - 6.14 \\
 \end{align}\]

Because a negative speed does not make sense, it can be ignored.

Verify for \(x \doteq 8.14\).

Left Side Right Side
\[\begin{array}{r}
 \frac{{100}}{x} + 4 \\
 \frac{{100}}{{8.14}} + 4 \\
 12.285... + 4 \\
 16.285... \\ 
\end{array}\]

\[\begin{array}{l}
 \frac{{100}}{{x - 2}} \\
 \frac{{100}}{{8.14 - 2}} \\
 \frac{{100}}{{6.14}} \\
 16.286... \\
 \end{array}\]

      LS \(\doteq\) RS

Because approximate numbers are used, the answers are not exactly the same, but they are very close.

With no headwind, Heatherโ€™s average speed is \(8.14\thinspace \rm{m/s}\). Therefore, with a headwind, her average speed is \(6.14\thinspace \rm{m/s}\).


 For further information about problem solving with rational equations see pp. 345 to 347 of Pre-Calculus 11.