Example 1
Completion requirements
Example 1 |
Solve \(\left| 2x + 2\right| = 2 - x \) graphically. Verify the solutions using substitution.
Graph \(f(x) = \left|2x + 2\right| \) and \(g(x) = 2 - x\).

The points of intersection are \((–4, 6)\) and \((0, 2)\), so \(x = -4\) and \(x = 0\) are solutions to the equation. These can be verified using substitution.

The points of intersection are \((–4, 6)\) and \((0, 2)\), so \(x = -4\) and \(x = 0\) are solutions to the equation. These can be verified using substitution.
Verify for \(x = -4\).
Left Side | Right Side |
---|---|
\(\begin{array}{r} \left| {2x + 2} \right| \\ \left| {2\left( { - 4} \right) + 2} \right| \\ \left| { - 6} \right| \\ 6 \end{array}\) |
\(\begin{array}{l} 2 - x \\ 2 - \left( { - 4} \right) \\ 6 \end{array}\) |
LS = RS |
Verify for \(x = 0\).
Left Side | Right Side |
---|---|
\(\begin{array}{r} \left| {2x + 2} \right| \\ \left| {2\left( 0 \right) + 2} \right| \\ \left| 2 \right| \\ 2 \end{array}\) |
\(\begin{array}{l} 2 - x \\ 2 - 0 \\ 2 \end{array}\) |
LS = RS |