Compare Your Answers
Completion requirements
- Solve \(\frac{1}{2}(x - 3)^2 + 2 = \left| 2x - 6\right|\) graphically. Verify any solutions by substitution.Graph the functions \(f(x) = \frac{1}{2} (x - 3)^2 + 2\) and \(g(x) = \left|2x - 6\right|\).
The two curves intersect at \((1, 4)\) and \((5, 4)\), so the solutions to the equation are \(1\) and \(5\).Verify for \(x = 1\).Left Side Right Side \[\begin{array}{r}
\frac{1}{2}\left( {x - 3} \right)^2 + 2 \\
\frac{1}{2}\left( {\left( 1 \right) - 3} \right)^2 + 2 \\
4 \end{array}\]\[\begin{array}{l}
\left| {2x - 6} \right| \\
\left| {2\left( 1 \right) - 6} \right| \\
\left| { - 4} \right| \\
4 \end{array}\]\(\hspace{30pt}\)LS = RS
Verify for \(x = 5\).Left Side Right Side \[\begin{array}{r}
\frac{1}{2}\left( {x - 3} \right)^2 + 2 \\
\frac{1}{2}\left( {\left( 5 \right) - 3} \right)^2 + 2 \\ 4 \end{array}\]\[\begin{array}{l}
\left| {2x - 6} \right| \\
\left| {2\left( 5 \right) - 6} \right| \\
\left| 4 \right| \\
4 \end{array}\]\(\hspace{30pt}\)LS = RS
- Solve \(\left| 1 - 3x\right| = x - 1\) graphically.Graph the functions \(f(x) = \left|1 - 3x\right|\) and \(g(x) = x = -1\).
There are no points of intersection, so there is no solution to the equation.