Example 1
Completion requirements
Example 1 |
-
Solve \(\left|2x + 1\right| = 7\) for the interval \(2x + 1 \ge 0\).
Since \(2x + 1 \ge 0\), the contents of the absolute value are positive, so \(\left|2x + 1\right| = 2x + 1\).
\(\begin{align}
\left| {2x + 1} \right| &= 7 \\
2x + 1 &= 7 \\
2x &= 6 \\
x &= 3 \\
\end{align}\)
Verify for \(x = 3\).
Left Side Right Side \[\begin{array}{r}
\left| {2x + 1} \right| \\
\left| {2(3) + 1} \right| \\
\left| 7 \right| \\
7 \end{array}\]
\(7\)
LS = RS
-
Solve \(\left|2x + 1\right| = 7\) for the interval \(2x + 1 \lt 0\).
Since \(2x + 1 \lt 0\), the contents of the absolute value are negative, so \(\left|2x + 1\right| = -(2x + 1)\).
\(\begin{align}
\left| {2x + 1} \right| &= 7 \\
-(2x + 1) &= 7 \\
-2x - 1 &= 7 \\
-2x &= 8 \\
x &= -4 \\
\end{align}\)
Verify for \(x = -4\).
Left Side Right Side \[\begin{array}{r}
\left| {2x + 1} \right| \\
\left| {2(-4) + 1} \right| \\
\left| -7 \right| \\
7 \end{array}\]
\(7\)
LS = RS