Compare Your Answers
Completion requirements
- Solve \(\left| {3x - 7} \right| = 8\) for the interval \(3x - 7 \ge 0\).Since \(3x - 7 \ge 0\), the contents of the absolute value are positive, so \(\left|3x - 7 \right| = 3x - 7\).\(\begin{align}
\left| {3x - 7} \right| &= 8 \\
3x - 7 &= 8 \\
3x &= 15 \\
x &= 5 \\
\end{align}\)Verify for \(x = 5\).
Left Side Right Side \[\begin{array}{r}
\left| {3x - 7} \right| \\
\left| {3(5) - 7} \right| \\
\left| 8 \right| \\
8 \end{array}\]
\(8\)
LS = RS - Solve \(\left| {x^2 - 3x} \right| = 2\) for the interval \(x^2 - 3x < 0\).Since \(x^2 - 3x \lt 0\), the contents of the absolute value are negative, so \(\left|x^2 - 3x \right| = -(x^2 - 3x)\).\(\begin{align}
\left| {x^2 - 3x} \right| &= 2 \\
- \left( {x^2 - 3x} \right) &= 2 \\
- x^2 + 3x &= 2 \\
0 &= x^2 - 3x + 2 \\
0 &= \left( {x - 2} \right)\left( {x - 1} \right) \end{align}\)\(\begin{align}
0 &= x - 2 \\
2 &= x \\
\end{align}\)\(\begin{align}
0 &= x - 1 \\
1 &= x \\
\end{align}\)Verify for \(x = 2\).
Left Side Right Side \[\begin{array}{r}
\left| {x^2 - 3x} \right| \\
\left| {2^2 - 3(2)} \right| \\
\left| 4 - 6 \right| \\
\left| -2 \right| \\
2 \end{array}\]
\(2\)
LS = RS
Verify for \(x = 1\).
Left Side Right Side \[\begin{array}{r}
\left| {x^2 - 3x} \right| \\
\left| {1^2 - 3(1)} \right| \\
\left| 1 - 3 \right| \\
\left| -2 \right| \\
2 \end{array}\]
\(2\)
LS = RS