Example  2

 

 Multimedia

Solve \(\left| 2x + 5\right| = 11\).

Case 1: \(\left|2x + 5\right| = 11\)

\(\begin{align}
 2x + 5 &\ge 0 \\
 2x &\ge - 5 \\
 x &\ge - \frac{5}{2} \\
 \end{align}\)


This case occurs when \(x \ge -\frac{5}{2}\). Since \(2x + 5 \ge 0\), the absolute value symbol can be dropped without changing the expression.

\(\begin{align}
 \left| {2x + 5} \right| &= 11 \\
 2x + 5 &= 11 \\
 2x &= 6 \\
 x &= 3 \\
 \end{align}\)


The solution \(x = 3\) is part of the interval of interest, \(x \ge -\frac{5}{2}\), so it is a solution to the equation.

Case 2
: \(2x + 5 \lt 0\)

\(\begin{align}
 2x + 5 &< 0 \\
 2x &< - 5 \\
 x &< -\frac{5}{2} \\
 \end{align}\)


This case occurs when \(x \lt -\frac{5}{2}\). Since \(2x + 5 \lt 0\), it becomes negative when the absolute value symbol is dropped.

\(\begin{align}
 \left| {2x + 5} \right| &= 11 \\
  - \left( {2x + 5} \right) &= 11 \\
  - 2x - 5 &= 11 \\
  - 2x &= 16 \\
 x &= -8  \end{align}\)


The solution \(x = -8\) is part of the internal of interest, \(x \lt -\frac{5}{2}\), so it is a solution to the equation.

The solutions to the equation are \(-8\) and \(3\).

Verify for \(x = -8\).

Left Side Right Side
\(\begin{array}{r}
 \left| {2x + 5} \right| \\
 \left| {2\left( { - 8} \right) + 5} \right| \\
 \left| { - 11} \right| \\
 11 \\
 \end{array}\)

\(11\)
   LS = RS
Verify for \(x = 3\).

Left Side Right Side
\(\begin{array}{r}
 \left| {2x + 5} \right| \\
 \left| {2\left( { 3} \right) + 5} \right| \\
 \left| { 11} \right| \\
 11 \\
 \end{array}\)

\(11\)
LS = RS