Solve \(-\frac{3}{2}x - 1 = \left|\frac{1}{2}x - 1\right|\). Verify the solutions by substitution.


Case 1: \(\frac{1}{2}x - 1 \ge 0\)

\[\begin{align}
 \frac{1}{2}x - 1 &\ge 0 \\
 \frac{1}{2}x &\ge 1 \\
 x &\ge 2 \\
 \end{align}\]

This case occurs when \(x \ge 2\). Since \(\frac{1}{2}x - 1 \ge 0\), the absolute value symbol can be dropped without changing the expression.

\[\begin{align}
  - \frac{3}{2}x - 1 &= \left| {\frac{1}{2}x - 1} \right| \\
  - \frac{3}{2}x - 1 &= \frac{1}{2}x - 1 \\
 0 &= 2x \\
 0 &= x \\
 \end{align}\]

The solution \(x = 0\) is not part of the interval of interest, \(x \ge 2\), so it is an extraneous solution, and is not a solution to the equation.


Extraneous solutions can be found by comparing the solution to the interval of interest or by verifying the solution by substitution.

Case 2
: \(\frac{1}{2}x - 1 \lt 0\)

\[\begin{align}
 \frac{1}{2}x - 1 &< 0 \\
 \frac{1}{2}x &< 1 \\
 x &< 2 \\
 \end{align}\]

This case occurs when \(x \lt 2\). Since \(\frac{1}{2}x - 1 \lt 0\), it becomes negative when the absolute value symbol is dropped.

\[\begin{align}
  - \frac{3}{2}x - 1 &= \left| {\frac{1}{2}x - 1} \right| \\
  - \frac{3}{2}x - 1 &= - \left( {\frac{1}{2}x - 1} \right) \\
  - \frac{3}{2}x - 1 &= - \frac{1}{2}x + 1 \\
  - 2 &= x \\
 \end{align}\]


The solution \(x = -2\) is part of the internal of interest, \(x \lt 2\), so it is a solution to the equation.

The solution to the equation is \(x = -2\).

Verify for \(x = 0\).

Left Side Right Side
\[\begin{array}{r}
  - \frac{3}{2}x - 1 \\
  - \frac{3}{2}\left( 0 \right) - 1 \\
  - 1  \end{array}\]

\[\begin{array}{l}
 \left| {\frac{1}{2}x - 1} \right| \\
 \left| {\frac{1}{2}\left( 0 \right) - 1} \right| \\
 \left| { - 1} \right| \\
 1  \end{array}\]

   LS \(\ne\) RS

This confirms \(x = 0\) is not a solution.
Verify for \(x = -2\).

Left Side Right Side
\[\begin{array}{r}
  - \frac{3}{2}x - 1 \\
  - \frac{3}{2}\left( { - 2} \right) - 1   \\
2  \end{array}\]

\[\begin{array}{l}
 \left| {\frac{1}{2}x - 1} \right| \\
 \left| {\frac{1}{2}\left( { - 2} \right) - 1} \right| \\
 \left| { - 2} \right| \\
 2  \end{array}\]

   LS = RS