The equations \(y = 2x + 3\) and \(y = -x - 3\) form a linear system.

  1. Graph the system.

  2. Determine the solution to the system.

    The two lines intersect at \((-2,-1)\), so this is the solution to the system.
  3. Verify the solution by substitution.

    \(y = 2x + 3\)

    Left Side Right Side
    \(\begin{array}{r}
      y \\
      -1  \end{array}\)

    \(\begin{array}{l}
      2x + 3 \\
      2(-2) + 3 \\
      -4 + 3\\
     -1 \end{array}\)

                 LS = RS

    \(y = -x - 3\)

    Left Side Right Side
    \(\begin{array}{r}
      y \\
      -1  \end{array}\)
    \(\begin{array}{l}
      -x - 3 \\
      -(-2) - 3 \\
      2 - 3\\
     -1 \end{array}\)
                 LS = RS


    The solution satisfies each equation. The solution is verified.