Compare Your Answers
Completion requirements
Solve the system graphically. Verify the solution by substitution.

The points of intersection are \((-1,5)\) and \((2,2)\), so these are the solutions to the system.
Verify for \((-1, 5)\).
Verify for \((2, 2)\).
- \(y = (x - 1)^2 + 1 \)
- \(y =\frac{1}{3}(x - 2)^2 + 2\)

The points of intersection are \((-1,5)\) and \((2,2)\), so these are the solutions to the system.
Verify for \((-1, 5)\).
\(y = (x - 1)^2 + 1\)
Left Side | Right Side |
---|---|
\[\begin{array}{r} y \\ 5 \end{array}\] |
\[\begin{array}{l} \left( {x - 1} \right)^2 + 1 \\ \left( {-1 - 1} \right)^2 + 1 \\ 5 \end{array}\] |
LS = RS |
\(y = \frac{1}{3} (x - 2)^2 + 2\)
Left Side | Right Side |
---|---|
\[\begin{array}{r} y \\ 5 \end{array}\] |
\[\begin{array}{l} \frac{1}{3}\left( {x - 2} \right)^2 + 2 \\ \frac{1}{3}\left( { - 1 - 2} \right)^2 + 2 \\ 5 \end{array}\] |
LS = RS |
Verify for \((2, 2)\).
\(y = (x - 1)^2 + 1\)
Left Side | Right Side |
---|---|
\[\begin{array}{r} y \\ 2 \end{array}\] |
\[\begin{array}{l} \left( {x - 1} \right)^2 + 1 \\ \left( {2 - 1} \right)^2 + 1 \\ 2 \end{array}\] |
LS = RS |
\(y = \frac{1}{3} (x - 2)^2 + 2\)
Left Side | Right Side |
---|---|
\[\begin{array}{r} y \\ 2 \end{array}\] |
\[\begin{array}{l} \frac{1}{3}\left( {x - 2} \right)^2 + 2 \\ \frac{1}{3}\left( { 2 - 2} \right)^2 + 2 \\ 2 \end{array}\] |
LS = RS |