Solve the given system of equations by substitution. Verify the solution.

\(\left\{ \begin{array}{l}
 x + y = 29 \\
 x - y = 175 \end{array} \right.\)


\(\begin{align}
 x + y &= 29 \\
 x &= 29 - y  \end{align}\)


\(\begin{align}
 x - y &= 175 \\
 \left( {29 - y} \right) - y &= 175 \\
 29 - 2y &= 175 \\
  - 2y &= 146 \\
 y &= - 73  \end{align}\)


\(\begin{align}
 x &= 29 - y \\
 x &= 29 - \left( { - 73} \right) \\
 x &= 102  \end{align}\)


The solution is \((102, –73)\).

Verify the solution.


Left Side Right Side
\(\begin{array}{r}
 x + y \\
 102 + \left( { - 73} \right) \\
 29  \end{array}\)

\(29\)
LS = RS                

Left Side Right Side
\[\begin{array}{r}
 x - y \\
 102 - \left( { - 73} \right) \\
 175  \end{array}\]

\(175\)
LS = RS                


Try to solve the given system of equations by substitution before continuing with the lesson.

\(\left\{ \begin{array}{l}
 y = x^2 + 5x + 6 \\
 y = 2x^2 + 4x - 6  \end{array} \right.\)