Solve the given system of equations by elimination. Verify the solution.

\[\left\{ \begin{array}{l}
 2 - \frac{p}{3} = \frac{q}{2} \\
 \frac{5}{3}\left( {2p - 3q} \right) = 10 \\
 \end{array} \right.\]



The equations are in different formats. Begin by rearranging them into the same format.

\[\begin{align}
 2 - \frac{p}{3} &= \frac{q}{2} \\
 2 - \frac{p}{3} - \frac{q}{2} &= 0 \\
  - \frac{1}{3}p - \frac{1}{2}q + 2 &= 0 \\
  - 6\left( { - \frac{1}{3}p - \frac{1}{2}q + 2} \right) &=  - 6\left( 0 \right) \\
 2p + 3q - 12 &= 0 \\
 \end{align}\]


\[\begin{align}
 \frac{5}{3}\left( {2p - 3q} \right) &= 10 \\
 2p - 3q &= 6 \\
 2p - 3q - 6 &= 0 \\
 \end{align}\]


Subtract the two equations to eliminate the \(p\)-variable, then solve for \(q\).

\(\begin{align}
 &2p + 3q - 12 = 0 \\
  -( &2p - 3q - \thinspace \thinspace 6 = 0)  \\
\hline {} \\
 &0p + 6q - \thinspace \thinspace 6 = 0 \\
\end{align}\)


\(\begin{align}
 6q - 6 &= 0 \\
 6q &= 6 \\
 q &= 1 \\
 \end{align}\)


Substitute this known value into either of the original equations to determine the \(p\)-value.

\[\begin{align}
 2p + 3q - 12 &= 0 \\
 2p + 3\left( 1 \right) - 12 &= 0 \\
 2p &= 9 \\
 p &= \frac{9}{2}
 \end{align}\]

The solution is \(p = \frac{9}{2}\) and \(q = 1\).

Verify the solution using the original equations.

\(2 - \frac{p}{3} = \frac{q}{2}\)

Left Side Right Side
\[\begin{array}{r}
 2 - \frac{p}{3} \\
 2 - \frac{{\left( {\frac{9}{2}} \right)}}{3} \\
 2 - \frac{3}{2} \\
 \frac{1}{2} \end{array}\]

\[\begin{array}{l}
 \frac{q}{2} \\
 \frac{1}{2} \\
 \end{array}\]

  LS = RS
\(\frac{5}{3}\left( {2p - 3q} \right) = 10\)

Left Side Right Side
\[\begin{array}{r}
 \frac{5}{3}\left( {2p - 3q} \right) \\
 \frac{5}{3}\left( {2\left( {\frac{9}{2}} \right) - 3\left( 1 \right)} \right) \\
 10 \end{array}\]

\(10\)
LS = RS                



Try to solve the given system of equations by elimination before continuing with the lesson.

\(\left\{ \begin{array}{l}
 y = x^2 - x - 3 \\
 y = x - 2  \end{array} \right.\)