Solve the given system of equations by substitution. Verify the solution.

\(\left\{ \begin{array}{l}
 y = 2x^2 - 14x + 55 \\
 y = 4x^2 + 15x - 30 \end{array} \right.\)




The \(y\) is isolated in the first equation, so substitute its equivalent for \(y\) in the second equation and solve.

\(\begin{align}
 y &= 4x^2 + 15x - 30 \\
 2x^2 - 14x + 55 &= 4x^2 + 15x - 30 \\
 0 &= 2x^2 + 29x - 85 \\
 0 &= 2x^2 + 34x - 5x - 85 \\
 0 &= 2x\left( {x + 17} \right) - 5\left( {x + 17} \right) \\
 0 &= \left( {x + 17} \right)\left( {2x - 5} \right) \end{align}\)


\(\begin{align}
 x + 17 &= 0 \\
 x &= - 17  \end{align}\)
\(\begin{align}
 2x - 5 &= 0 \\
 2x &= 5 \\
 x &= \frac{5}{2}
 \end{align}\)

Substitute each \(x\)-value into any equation that contains both \(x\) and \(y\) to determine the \(y\)-value.

\[\begin{align}
 y &= 2x^2 - 14x + 55 \\
 y &= 2\left( { - 17} \right)^2 - 14\left( { - 17} \right) + 55 \\
 y &= 871  \end{align}\]
\[\begin{align}
 y &= 2x^2 - 14x + 55 \\
 y &= 2\left( {\frac{5}{2}} \right)^2 - 14\left( {\frac{5}{2}} \right) + 55 \\
 y &= \frac{{65}}{2} \end{align}\]

The solutions to the system are \(\left( { - 17,871} \right)\) and \(\left( {\frac{5}{2},\frac{{65}}{2}} \right)\).

Verify for \((-17, 871)\).

\(y = 2x^2 - 14x + 55\)

Left Side Right Side
\(\begin{array}{r}
 y \\
 871 \end{array}\)

\(\begin{array}
 2x^2 - 14x + 55 \\
 2\left( { - 17} \right)^2 - 14\left( { - 17} \right) + 55 \\
 871
 \end{array}\)

\(\hspace{25pt}\)LS = RS
\(y = 4x^2 + 15x - 30\)

Left Side Right Side
\(\begin{array}{r}
 y \\
 871 \end{array}\)
\(\begin{array}
 4x^2 + 15x - 30 \\
 4\left( { - 17} \right)^2 + 15\left( { - 17} \right) - 30 \\
 871
 \end{array}\)

\(\hspace{25pt}\)LS = RS


Verify for \(\left( {\frac{5}{2},\frac{{65}}{2}} \right)\).

\(y = 2x^2 - 14x + 55\)

Left Side Right Side
\[\begin{array}{r}
 y \\
 \frac{{65}}{2}
 \end{array}\]

\[\begin{array}{l}
 2x^2 - 14x + 55 \\
 2\left( {\frac{5}{2}} \right)^2 - 14\left( {\frac{5}{2}} \right) + 55 \\
 \frac{{65}}{2}
 \end{array}\]

\(\hspace{25pt}\)LS = RS
\(y = 4x^2 + 15x - 30\)

Left Side Right Side
\[\begin{array}{r}
 y \\
 \frac{{65}}{2}
 \end{array}\]
\[\begin{array}{l}
 4x^2 + 15x - 30 \\
 4\left( {\frac{5}{2}} \right)^2 + 15\left( {\frac{5}{2}} \right) - 30 \\
 \frac{{65}}{2} 
 \end{array}\]

\(\hspace{25pt}\)LS = RS