Example  1

 

 Multimedia

Solve the given system of equations by elimination. Verify the solution.

\(\left\{ \begin{array}{l}
 y = x^2 - 6x - 6.5 \\
 2y = 4x^2 + 5  \end{array} \right.\)



Start by expressing the two equations in the same format. The second equation does not have an \(x\)-term, so include \(0x\).

\(2y = 4x^2 + 0x + 5\)

Now that both equations are in the same format, multiply one or both equations by a constant, such that the coefficient on one variable is the same in both equations. It will usually be easiest to do this for a variable that is not squared, \(y\) in this case.

\(\begin{align}
 y &= x^2 - 6x - 6.5 \\
 2\left( y \right) &= 2\left( {x^2 - 6x - 6.5} \right) \\
 2y &= 2x^2 - 12x - 13
 \end{align}\)


Now that both equations contain \(2y\), the \(y\)’s will be eliminated if the two equations are subtracted. This will leave an equation with only \(x\)’s, which can be solved.

\(\begin{align}
 2y &= 4x^2 + \thinspace \thinspace 0x + \thinspace \thinspace 5 \\
  - (2y &= 2x^2 - 12x - 13) \\
\hline {} \\
 0 &= 2x^2 + 12x + 18 \\
\end{align}\)


\(\begin{align}
 0 &= 2\left( {x^2 + 6x + 9} \right) \\
 0 &= 2\left( {x + 3} \right)^2  \\
 \end{align}\)


\(\begin{align}
 x + 3 &= 0 \\
 x &= -3  \\
 \end{align}\)


Now that the \(x\)-value is known, substitute it into an equation that contains both \(x\) and \(y\) to determine the \(y\)-value.

\(\begin{align}
 y &= x^2 - 6x - 6.5 \\
 y &= \left( { - 3} \right)^2 - 6\left( { - 3} \right) - 6.5 \\
 y &= 20.5  \end{align}\)


The solution is \((-3, 20.5)\).

Verification:

\(y = x^2 - 6x - 6.5\)

Left Side Right Side
\[\begin{array}{r}
 y \\
 20.5  \end{array}\]

\[\begin{array}{l}
 x^2 - 6x - 6.5 \\
 \left( { - 3} \right)^2 - 6\left( { - 3} \right) - 6.5 \\
 20.5  \end{array}\]

             LS = RS
\(2y = 4x^2 + 5\)

Left Side Right Side
\[\begin{array}{r}
 2y \\
 2\left( {20.5} \right) \\
 41 \end{array}\]

\[\begin{array}{l}
 4x^2 + 5 \\
 4\left( { - 3} \right)^2 + 5 \\
 41
 \end{array}\]

             LS = RS