Compare Your Answers
Completion requirements
Solve the following system of equations by elimination. Verify the solution.
\(\left\{ \begin{array}{l}
2y = x + 3 \\
4y = x^2 + 6x - 15 \end{array} \right.\)
\(\left\{ \begin{array}{l}
2y = x + 3 \\
4y = x^2 + 6x - 15 \end{array} \right.\)
Multiply \(2y = x + 3\) by \(2\), so there is the same coefficient on the \(y\)-terms in each equation.
\(\begin{align}
2(2y &= x + 3) \\
4y &= 2x + 6 \\
\end{align}\)
Now subtract the two equations.
The solutions to the system are \((-7, -2)\) and \((3, 3)\).
Verify for \((-7, -2)\).
Verify for \((3, 3)\).
\(\begin{align}
2(2y &= x + 3) \\
4y &= 2x + 6 \\
\end{align}\)
Now subtract the two equations.
\(\begin{align}
4y &= x^2 + 6x - 15 \\
- (4y &= \hspace{19pt} 2x + \hspace{4pt} 6) \\
\hline {} \\
0 &= x^2 + 4x - 21 \\
\end{align}\)
\(0 = (x + 7)(x - 3)\)
4y &= x^2 + 6x - 15 \\
- (4y &= \hspace{19pt} 2x + \hspace{4pt} 6) \\
\hline {} \\
0 &= x^2 + 4x - 21 \\
\end{align}\)
\(0 = (x + 7)(x - 3)\)
\(\begin{align}
x + 7 &= 0 \\
x &= -7 \end{align}\)
\(\begin{align}
2y = x + 3 \\
2y = (-7) + 3 \\
2y = -4 \\
y = -2 \end{align}\)
x + 7 &= 0 \\
x &= -7 \end{align}\)
\(\begin{align}
2y = x + 3 \\
2y = (-7) + 3 \\
2y = -4 \\
y = -2 \end{align}\)
\(\begin{align}
x - 3 &= 0 \\
x &= 3 \end{align}\)
\(\begin{align}
2y = x + 3 \\
2y = (3) + 3 \\
2y = 6 \\
y = 3 \end{align}\)
x - 3 &= 0 \\
x &= 3 \end{align}\)
\(\begin{align}
2y = x + 3 \\
2y = (3) + 3 \\
2y = 6 \\
y = 3 \end{align}\)
The solutions to the system are \((-7, -2)\) and \((3, 3)\).
Verify for \((-7, -2)\).
\(2y = x + 3\)
Left Side | Right Side |
---|---|
\[\begin{array}{r}
2y \\ 2( - 2) \\ - 4 \end{array}\] |
\[\begin{array}{l}
x + 3 \\ ( - 7) + 3 \\ - 4 \end{array}\] |
LS = RS |
\(4y = x^2 + 6x - 15\)
Left Side | Right Side |
---|---|
\[\begin{array}{r}
4y \\ 4( - 2) \\ - 8 \end{array}\] |
\[\begin{array}{l}
x^2 + 6x - 15 \\ ( - 7)^2 + 6( - 7) - 15 \\ 49 - 42 - 15 \\ - 8 \end{array}\] |
LS = RS |
Verify for \((3, 3)\).
\(2y = x + 3\)
Left Side | Right Side |
---|---|
\[\begin{array}{r}
2y \\ 2( 3) \\ 6 \end{array}\] |
\[\begin{array}{l}
x + 3 \\ ( 3) + 3 \\ 6 \end{array}\] |
LS = RS |
\(4y = x^2 + 6x - 15\)
Left Side | Right Side |
---|---|
\[\begin{array}{r}
4y \\ 4( 3) \\ 12 \end{array}\] |
\[\begin{array}{l}
x^2 + 6x - 15 \\ ( 3)^2 + 6( 3) - 15 \\ 9 + 18 - 15 \\ 12 \end{array}\] |
LS = RS |