Solve the given system algebraically.

\(\left\{ \begin{array}{l}
 3y = x^2 + 2 \\
 2y = - x^2 - 2  \end{array} \right.\)



The two systems are in the same format, so elimination is a good strategy to use for this system. Adding the two equations will eliminate the \(x^2\) term.

\(\begin{align}
 3y &= \enspace \thinspace x^2 + 2 \\
  + (2y &= -x^2 - 2)  \\
\hline {} \\
 5y &= \qquad \enspace 0 \\
 y &= \qquad \enspace 0  \end{align}\)


\(\begin{align}
 y &= x^2 + 2 \\
 0 &= x^2 + 2 \\
  - 2 &= x^2  \\
  \pm \sqrt { - 2}  &= x
 \end{align}\)


The square root of a negative number is not a real number, so this system has no real solution.

Graphical verification: