Solve the inequality \(-x^2 + 8x - 12 \lt 0\). Plot the solution set on a number line.


Determine the zeros of the corresponding function.

\(\begin{align}
  - x^2 + 8x - 12 &= 0 \\
  - 1\left( {x - 6} \right)\left( {x - 2} \right) &= 0
 \end{align}\)


\(\begin{align}
 x - 6 &= 0 \\
 x &= 6
 \end{align}\)
\(\begin{align}
 x - 2 &= 0 \\
 x &= 2
 \end{align}\)

The intervals that may be part of the solution set are:

  • \(x \lt 2\)
  • \(2 \lt x \lt 6\)
  • \(x \gt 6\)

The zeros are not part of the solution set because the inequality is strict. Use test points to determine which intervals are part of the solution set.

Test \(x \lt 2 \), using \(x = 0\).

Left Side Right Side
\(\begin{array}{r}
  - x^2 + 8x - 12 \\
  - \left( 0 \right)^2 + 8\left( 0 \right) - 12 \\
  - 12
 \end{array}\)

\(0\)
LS \(\lt\) RS \(\hspace{30pt}\)


The test point \(0\) satisfies the original inequality, so \(x \lt 2\) is part of the solution set.

Test \(2 \lt x \lt 6 \), using \(x = 3\).

Left Side Right Side
\(\begin{array}{r}
  - x^2 + 8x - 12 \\
  - \left( 3 \right)^2 + 8\left( 3 \right) - 12 \\
  3
 \end{array}\)
\(0\)
LS \(\gt\) RS \(\hspace{30pt}\)


The test point \(3\) does not satisfy the original inequality, so \(2 \lt x \lt 6\) is not part of the solution set.

Test \(x \gt 6 \), using \(x = 8\).

Left Side Right Side
\(\begin{array}{r}
  - x^2 + 8x - 12 \\
  - \left( 8 \right)^2 + 8\left( 8 \right) - 12 \\
  - 12
 \end{array}\)
\(0\)
LS \(\lt\) RS \(\hspace{30pt}\)

The test point \(8\) satisfies the original inequality, so \(x \gt 6\) is part of the solution set.

Combine the appropriate solution intervals to show the entire solution set.

{\(x | x \lt 2 \thinspace {\rm{or}} \thinspace x \gt 6, \thinspace x \in \rm{R}\)}

Plot the solution set on a number line.