Unit E: Statistics and Probability

Chapter 2: Probability


Theoretical and Experimental Probability

In the Lesson 1, Probability of an Event, Matthew discovered that if he tossed a coin, the probability of the coin landing heads is 0.5 or 50%.

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnspacing=¨0px¨ columnalign=¨right center left¨»«mtr»«mtd»«mi»probability«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mi»number«/mi»«mo»§#160;«/mo»«mi»of«/mi»«mo»§#160;«/mo»«mi»favourable«/mi»«mo»§#160;«/mo»«mi»outcomes«/mi»«/mrow»«mrow»«mi»total«/mi»«mo»§#160;«/mo»«mi»number«/mi»«mo»§#160;«/mo»«mi»of«/mi»«mo»§#160;«/mo»«mi»possible«/mi»«mo»§#160;«/mo»«mi»outcomes«/mi»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mi»number«/mi»«mo»§#160;«/mo»«mi»of«/mi»«mo»§#160;«/mo»«mi»heads«/mi»«mo»§#160;«/mo»«mi»on«/mi»«mo»§#160;«/mo»«mi mathvariant=¨normal¨»a«/mi»«mo»§#160;«/mo»«mi»coin«/mi»«/mrow»«mrow»«mi»total«/mi»«mo»§#160;«/mo»«mi»number«/mi»«mo»§#160;«/mo»«mi»sides«/mi»«mo»§#160;«/mo»«mi»on«/mi»«mo»§#160;«/mo»«mi mathvariant=¨normal¨»a«/mi»«mo»§#160;«/mo»«mi»coin«/mi»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mtd»«/mtr»«mtr»«mtd»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»0«/mn»«mo».«/mo»«mn»5«/mn»«/mtd»«/mtr»«/mtable»«/math»

Matthew decided to conduct an experiment to determine if the probability is accurate. He predicted that if he tossed a loonie 30 times, the coin would land heads half of the time. There should be 15 heads when the loonie is tossed 30 times.

Matthew recorded the results of his experiment in a table.

Outcome Frequency
heads 21
tails 9
total 30

The coin landed heads more often than predicted. Why were 21 heads tossed on the coin if the predicted value was 15?



In this lesson, theoretical probability and experimental probability are calculated and used to make decisions in real-life situations.

By the end of this lesson, you will be able to

  • calculate the theoretical probability
  • calculate the experimental probability
  • make decisions based on probability
  • solve real-life problems involving probability