A: The Sine and Cosine Ratios
There are three pairs of sides that can be identified from the triangle in the Warm Up. These are
-
the
length opposite θ and the
length adjacent to θ
-
the length opposite θ and the
hypotenuse
-
the
length adjacent to θ and the
hypotenuse
These side pairings are used in the three
primary trigonometric ratios, which include the tangent ratio, the
sine ratio, and the
cosine ratio.
Key Lesson Marker
Tangent Ratio
|
«math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»tan«/mi»«mo»§#160;«/mo»«mi mathvariant=¨normal¨»§#952;«/mi»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mfrac»«mrow»«mi
mathcolor=¨#00A2E8¨»length«/mi»«mo mathcolor=¨#00A2E8¨»§#160;«/mo»«mi mathcolor=¨#00A2E8¨»opposite«/mi»«mo mathcolor=¨#00A2E8¨»§#160;«/mo»«mi mathvariant=¨normal¨ mathcolor=¨#00A2E8¨»§#952;«/mi»«/mrow»«mrow»«mi mathcolor=¨#DC2515¨»length«/mi»«mo
mathcolor=¨#DC2515¨»§#160;«/mo»«mi mathcolor=¨#DC2515¨»adjacent«/mi»«mo mathcolor=¨#DC2515¨»§#160;«/mo»«mi mathvariant=¨normal¨ mathcolor=¨#DC2515¨»§#952;«/mi»«/mrow»«/mfrac»«/math»
|
Sine Ratio
|
«math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»sin«/mi»«mo»§#160;«/mo»«mi mathvariant=¨normal¨»§#952;«/mi»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mfrac»«mrow»«mi mathcolor=¨#00A2E8¨»length«/mi»«mo mathcolor=¨#00A2E8¨»§#160;«/mo»«mi
mathcolor=¨#00A2E8¨»opposite«/mi»«mo mathcolor=¨#00A2E8¨»§#160;«/mo»«mi mathvariant=¨normal¨ mathcolor=¨#00A2E8¨»§#952;«/mi»«/mrow»«mi mathcolor=¨#009D56¨»hypotenuse«/mi»«/mfrac»«/math»
|
Cosine Ratio
|
«math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»cos«/mi»«mo»§#160;«/mo»«mi mathvariant=¨normal¨»§#952;«/mi»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mfrac»«mrow»«mi mathcolor=¨#DC2515¨»length«/mi»«mo mathcolor=¨#DC2515¨»§#160;«/mo»«mi
mathcolor=¨#DC2515¨»adjacent«/mi»«mo mathcolor=¨#DC2515¨»§#160;«/mo»«mi mathvariant=¨normal¨ mathcolor=¨#DC2515¨»§#952;«/mi»«/mrow»«mi mathcolor=¨#009D56¨»hypotenuse«/mi»«/mfrac»«/math»
|
|
|
Primary Trigonometric Ratios
The sine, cosine, and tangent ratios
Sine Ratio
The ratio of the side length opposite an angle to the length of the hypotenuse in a right triangle
Cosine Ratio
The ratio of the side length adjacent to an angle to the length of the hypotenuse in a right triangle
|
You may have noticed that six ratios are possible for any angle in a triangle. These are:
«math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mrow»«mi mathcolor=¨#00A2E8¨»length«/mi»«mo mathcolor=¨#00A2E8¨»§#160;«/mo»«mi mathcolor=¨#00A2E8¨»opposite«/mi»«mo mathcolor=¨#00A2E8¨»§#160;«/mo»«mi
mathvariant=¨normal¨ mathcolor=¨#00A2E8¨»§#952;«/mi»«/mrow»«mrow»«mi mathcolor=¨#DC2515¨»length«/mi»«mo mathcolor=¨#DC2515¨»§#160;«/mo»«mi mathcolor=¨#DC2515¨»adjacent«/mi»«mo mathcolor=¨#DC2515¨»§#160;«/mo»«mi mathvariant=¨normal¨
mathcolor=¨#DC2515¨»§#952;«/mi»«/mrow»«/mfrac»«/math»
|
«math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mrow»«mi mathcolor=¨#DC2515¨»length«/mi»«mo mathcolor=¨#DC2515¨»§#160;«/mo»«mi mathcolor=¨#DC2515¨»adjacent«/mi»«mo mathcolor=¨#DC2515¨»§#160;«/mo»«mi
mathvariant=¨normal¨ mathcolor=¨#DC2515¨»§#952;«/mi»«/mrow»«mrow»«mi mathcolor=¨#00A2E8¨»length«/mi»«mo mathcolor=¨#00A2E8¨»§#160;«/mo»«mi mathcolor=¨#00A2E8¨»opposite«/mi»«mo mathcolor=¨#00A2E8¨»§#160;«/mo»«mi mathvariant=¨normal¨
mathcolor=¨#00A2E8¨»§#952;«/mi»«/mrow»«/mfrac»«/math»
|
«math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mrow»«mi mathcolor=¨#00A2E8¨»length«/mi»«mo mathcolor=¨#00A2E8¨»§#160;«/mo»«mi mathcolor=¨#00A2E8¨»opposite«/mi»«mo mathcolor=¨#00A2E8¨»§#160;«/mo»«mi
mathvariant=¨normal¨ mathcolor=¨#00A2E8¨»§#952;«/mi»«/mrow»«mi mathcolor=¨#009D56¨»hypotenuse«/mi»«/mfrac»«/math» |
«math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mi mathcolor=¨#009D56¨»hypotenuse«/mi»«mrow»«mi mathcolor=¨#00A2E8¨»length«/mi»«mo mathcolor=¨#00A2E8¨»§#160;«/mo»«mi mathcolor=¨#00A2E8¨»opposite«/mi»«mo
mathcolor=¨#00A2E8¨»§#160;«/mo»«mi mathvariant=¨normal¨ mathcolor=¨#00A2E8¨»§#952;«/mi»«/mrow»«/mfrac»«/math» |
«math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mrow»«mi mathcolor=¨#DC2515¨»length«/mi»«mo mathcolor=¨#DC2515¨»§#160;«/mo»«mi mathcolor=¨#DC2515¨»adjacent«/mi»«mo mathcolor=¨#DC2515¨»§#160;«/mo»«mi
mathvariant=¨normal¨ mathcolor=¨#DC2515¨»§#952;«/mi»«/mrow»«mi mathcolor=¨#009D56¨»hypotenuse«/mi»«/mfrac»«/math» |
«math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mi mathcolor=¨#009D56¨»hypotenuse«/mi»«mrow»«mi mathcolor=¨#DC2515¨»length«/mi»«mo mathcolor=¨#DC2515¨»§#160;«/mo»«mi mathcolor=¨#DC2515¨»adjacent«/mi»«mo
mathcolor=¨#DC2515¨»§#160;«/mo»«mi mathvariant=¨normal¨ mathcolor=¨#DC2515¨»§#952;«/mi»«/mrow»«/mfrac»«/math» |
Why do you think this course uses only three of these ratios? You will need to explain this in the Practice for this lesson.
|
Before continuing with the lesson, try to determine the value of x and y using the sine and cosine ratios.