Lesson 3.3: Solving Problems with Right Triangles
Lesson 3.3: Solving Problems with Right Triangles
Lesson 3.3 video link
. (Video under development)
NOTE: An error in the explanation occurs at 26:55 to 28:39. The incorrect statement is Sine = Opposite/Adjacent and the subsequent calculations. Below are the correct calculations.
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle indentalign=¨right¨»«mtext»tan§#160;§#952;=«/mtext»«mfrac»«mtext»opposite«/mtext»«mtext»adjacent«/mtext»«/mfrac»«mspace linebreak=¨newline¨/»«mi»tan«/mi»«mo»§#160;«/mo»«mn»6«/mn»«mo»§#176;«/mo»«mo»=«/mo»«mfrac»«mrow»«mn»100«/mn»«mo»§#160;«/mo»«mtext»m«/mtext»«/mrow»«mtext»d«/mtext»«/mfrac»«mspace linebreak=¨newline¨/»«mtext»d§#160;§#215;§#160;tan§#160;6§#176;«/mtext»«mo»=«/mo»«mn»100«/mn»«mo»§#160;«/mo»«mtext»m«/mtext»«mspace linebreak=¨newline¨/»«mtext»d§#160;=§#160;«/mtext»«mfrac»«mrow»«mn»100«/mn»«mo»§#160;«/mo»«mtext»m«/mtext»«/mrow»«mtext»tan§#160;6§#176;«/mtext»«/mfrac»«mspace linebreak=¨newline¨/»«mtext»d§#160;=§#160;951.4364454...«/mtext»«mspace linebreak=¨newline¨/»«mtext»d§#160;=§#160;951.4§#160;m§#160;«/mtext»«/mstyle»«/math»
The three primary trigonometric ratios are important tools for determining unknown values in a right triangle. In this lesson, you will use these ratios to solve more complex problems.
In
Lesson 3.3, you will learn about
-
solving right triangles
-
solving problems that involve more than one right triangle
Warm Up
A. The Pythagorean Theorem
For a right triangle with legs
a and
b and hypotenuse
c,
a2 +
b2 =
c2. This relationship is often referred to as the Pythagorean theorem or Pythagoras' theorem, and is named after a Greek mathematician who lived about 2500 years ago.
The Pythagorean theorem can be used to determine the length of an unknown side of a right triangle.
Example 1 |
A right triangle has a hypotenuse length of 15 m and a leg length of 12 m. Determine the length of the triangle's other leg.
|