Lesson 5.3 Summary
Completion requirements
![]() |
For further information about factoring polynomials through decomposition, see pp. 224 - 233 of Mathematics 10. |
Additional video examples are shown below:
Video Set 1:
Factoring by Decomposition (Method 1) |
|
Video 2:
Factoring by Decomposition (Method 2) |
|
Video Set 3:
Factoring Trinomials (Method 1) |
|
Video Set 4:
Factoring Trinomials (Method 2) |
|
Video Set 5:
Factoring Trinomials with a GCF (Method 1) |
|
Video Set 6:
Factoring Trinomials with a GCF (Method 2) |
|
Video Set 7:
Factoring Trinomials where a ≠1 (Method 1) |
|
Video Set 8:
Factoring Trinomials where a ≠1 (Method 2) |
|
Video Set 9:
Extension of Factoring Trinomials |
|
Video 10:
Application of Factoring Trinomials |
|
Many trinomials of the forms «math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mi»b«/mi»«mi»x«/mi»«mo»+«/mo»«mi»c«/mi»«/math» and «math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»a«/mi»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mi»b«/mi»«mi»x«/mi»«mo»+«/mo»«mi»c«/mi»«/math» can be factored as a product of two binomials, with or without a GCF. Sometimes polynomials follow certain patterns and can be factored using more specialized methods. The next lesson focuses on some of these more specific strategies.