B. Squaring the Binomial
The relationship you explored in the Investigation can be seen by squaring the binomial «math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«mo»+«/mo»«mi»y«/mi»«/math».
Notice that the terms in the trinomial are related to the terms in the binomial, as shown below.
Alternatively, we can look at a perfect square trinomial in the opposite way.
According to this pattern, any trinomial of the form «math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»2«/mn»«mi»x«/mi»«mi»y«/mi»«mo»+«/mo»«msup»«mi»y«/mi»«mn»2«/mn»«/msup»«/math»
can be factored as «math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mo»(«/mo»«mi»x«/mi»«mo»+«/mo»«mi»y«/mi»«msup»«mo»)«/mo»«mn»2«/mn»«/msup»«/math».
Example 1 |
Factor «math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»-«/mo»«mn»12«/mn»«mi»x«/mi»«mo»+«/mo»«mn»36«/mn»«/math».
|
Example 2 |
Factor «math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mn»9«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»24«/mn»«mi»x«/mi»«mo»+«/mo»«mn»16«/mn»«/math». The first term of the trinomial is the perfect square «math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mo mathcolor=¨#B94A48¨»(«/mo»«mn mathcolor=¨#B94A48¨»3«/mn»«mi mathcolor=¨#B94A48¨»x«/mi»«msup mathcolor=¨#B94A48¨»«mo mathcolor=¨#B94A48¨»)«/mo»«mn»2«/mn»«/msup»«/math», and the third term of the trinomial is the perfect square «math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msup mathcolor=¨#B94A48¨»«mn mathcolor=¨#B94A48¨»4«/mn»«mn»2«/mn»«/msup»«/math». These two observations are enough to further investigate the possibility that this is a perfect-square trinomial. The middle term of the trinomial is twice the product of the square root of the first and third terms. This trinomial is a perfect-square trinomial of the form «math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msup mathcolor=¨#B94A48¨»«mi mathcolor=¨#B94A48¨»x«/mi»«mn»2«/mn»«/msup»«mo mathcolor=¨#B94A48¨»+«/mo»«mn mathcolor=¨#B94A48¨»2«/mn»«mi mathcolor=¨#B94A48¨»x«/mi»«mi mathcolor=¨#B94A48¨»y«/mi»«mo mathcolor=¨#B94A48¨»+«/mo»«msup mathcolor=¨#B94A48¨»«mi mathcolor=¨#B94A48¨»y«/mi»«mn»2«/mn»«/msup»«/math».
|
Recognizing that a trinomial is a perfect-square trinomial can lead to a quick factorization. However, it is still possible to use algebra tiles or decomposition to factor these perfect-square trinomials.