Compare your answers

Determine the area, to the nearest tenth, of the shaded region in the diagram provided.

 

Method 1: Subtraction of Non-Shaded Area

Method 2: Addition of Shaded Areas

Let S represent the shaded region in the diagram.
Let T represent the largest triangle in the diagram.
 

Let R represent the rectangle in diagram.
 

The area of shaded region can be found by taking the area of T and subtracting the area of the R.

Therefore formula for the area of the shaded region is:

«math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub mathcolor=¨#B94A48¨»«mi mathcolor=¨#B94A48¨»A«/mi»«mi»S«/mi»«/msub»«mo mathcolor=¨#B94A48¨»=«/mo»«msub mathcolor=¨#B94A48¨»«mi mathcolor=¨#B94A48¨»A«/mi»«mi»T«/mi»«/msub»«mo mathcolor=¨#B94A48¨»-«/mo»«msub mathcolor=¨#B94A48¨»«mi mathcolor=¨#B94A48¨»A«/mi»«mi»R«/mi»«/msub»«/math»

«math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub mathcolor=¨#B94A48¨»«mi mathcolor=¨#B94A48¨»A«/mi»«mi»S«/mi»«/msub»«mo mathcolor=¨#B94A48¨»=«/mo»«mfrac mathcolor=¨#B94A48¨»«mn»1«/mn»«mn»2«/mn»«/mfrac»«mi mathcolor=¨#B94A48¨»b«/mi»«mi mathcolor=¨#B94A48¨»h«/mi»«mo mathcolor=¨#B94A48¨»+«/mo»«mi mathcolor=¨#B94A48¨»l«/mi»«mi mathcolor=¨#B94A48¨»w«/mi»«/math»

The height of the T is 6 m + 7.5 m = 13.5 m

«math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub mathcolor=¨#B94A48¨»«mi mathcolor=¨#B94A48¨»A«/mi»«mi»S«/mi»«/msub»«mo mathcolor=¨#B94A48¨»=«/mo»«mfrac mathcolor=¨#B94A48¨»«mn»1«/mn»«mn»2«/mn»«/mfrac»«mo mathcolor=¨#B94A48¨»(«/mo»«mn mathcolor=¨#B94A48¨»13«/mn»«mo mathcolor=¨#B94A48¨».«/mo»«mn mathcolor=¨#B94A48¨»5«/mn»«mo mathcolor=¨#B94A48¨»§#160;«/mo»«mi mathvariant=¨normal¨ mathcolor=¨#B94A48¨»m«/mi»«mo mathcolor=¨#B94A48¨»)«/mo»«mo mathcolor=¨#B94A48¨»(«/mo»«mn mathcolor=¨#B94A48¨»13«/mn»«mo mathcolor=¨#B94A48¨».«/mo»«mn mathcolor=¨#B94A48¨»5«/mn»«mo mathcolor=¨#B94A48¨»§#160;«/mo»«mi mathvariant=¨normal¨ mathcolor=¨#B94A48¨»m«/mi»«mo mathcolor=¨#B94A48¨»)«/mo»«mo mathcolor=¨#B94A48¨»§#160;«/mo»«mo mathcolor=¨#B94A48¨»-«/mo»«mo mathcolor=¨#B94A48¨»§#160;«/mo»«mo mathcolor=¨#B94A48¨»(«/mo»«mn mathcolor=¨#B94A48¨»7«/mn»«mo mathcolor=¨#B94A48¨».«/mo»«mn mathcolor=¨#B94A48¨»5«/mn»«mo mathcolor=¨#B94A48¨»§#160;«/mo»«mi mathvariant=¨normal¨ mathcolor=¨#B94A48¨»m«/mi»«mo mathcolor=¨#B94A48¨»)«/mo»«mo mathcolor=¨#B94A48¨»(«/mo»«mn mathcolor=¨#B94A48¨»6«/mn»«mo mathcolor=¨#B94A48¨»§#160;«/mo»«mi mathvariant=¨normal¨ mathcolor=¨#B94A48¨»m«/mi»«mo mathcolor=¨#B94A48¨»)«/mo»«/math»

«math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub mathcolor=¨#B94A48¨»«mi mathcolor=¨#B94A48¨»A«/mi»«mi»S«/mi»«/msub»«mo mathcolor=¨#B94A48¨»=«/mo»«mn mathcolor=¨#B94A48¨»46«/mn»«mo mathcolor=¨#B94A48¨».«/mo»«mn mathcolor=¨#B94A48¨»125«/mn»«mo mathcolor=¨#B94A48¨»§#160;«/mo»«msup mathcolor=¨#B94A48¨»«mi mathvariant=¨normal¨ mathcolor=¨#B94A48¨»m«/mi»«mn»2«/mn»«/msup»«/math»

«math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub mathcolor=¨#B94A48¨»«mi mathvariant=¨bold-italic¨ mathcolor=¨#B94A48¨»A«/mi»«mi mathvariant=¨bold¨»S«/mi»«/msub»«mo mathvariant=¨bold¨ mathcolor=¨#B94A48¨»=«/mo»«mn mathvariant=¨bold¨ mathcolor=¨#B94A48¨»46«/mn»«mo mathvariant=¨bold¨ mathcolor=¨#B94A48¨».«/mo»«mn mathvariant=¨bold¨ mathcolor=¨#B94A48¨»1«/mn»«mo mathvariant=¨bold¨ mathcolor=¨#B94A48¨»§#160;«/mo»«msup mathcolor=¨#B94A48¨»«mi mathvariant=¨bold¨ mathcolor=¨#B94A48¨»m«/mi»«mn mathvariant=¨bold¨»2«/mn»«/msup»«/math»

Let S represent the shaded region in the diagram.
Let P represent the upper shaded triangle in the diagram.
Let Q represent the lower shaded triangle in the diagram.
 

The area of the shaded region can be found by taking the areas of P and Q and adding them together.

«math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub mathcolor=¨#B94A48¨»«mi mathcolor=¨#B94A48¨»A«/mi»«mi»S«/mi»«/msub»«mo mathcolor=¨#B94A48¨»=«/mo»«msub mathcolor=¨#B94A48¨»«mi mathcolor=¨#B94A48¨»A«/mi»«mi»P«/mi»«/msub»«mo mathcolor=¨#B94A48¨»+«/mo»«msub mathcolor=¨#B94A48¨»«mi mathcolor=¨#B94A48¨»A«/mi»«mi»Q«/mi»«/msub»«/math»

«math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub mathcolor=¨#B94A48¨»«mi mathcolor=¨#B94A48¨»A«/mi»«mi»S«/mi»«/msub»«mo mathcolor=¨#B94A48¨»=«/mo»«mfrac mathcolor=¨#B94A48¨»«mn»1«/mn»«mn»2«/mn»«/mfrac»«msub mathcolor=¨#B94A48¨»«mi mathcolor=¨#B94A48¨»b«/mi»«mi»P«/mi»«/msub»«msub mathcolor=¨#B94A48¨»«mi mathcolor=¨#B94A48¨»h«/mi»«mi»P«/mi»«/msub»«mo mathcolor=¨#B94A48¨»+«/mo»«mfrac mathcolor=¨#B94A48¨»«mn»1«/mn»«mn»2«/mn»«/mfrac»«msub mathcolor=¨#B94A48¨»«mi mathcolor=¨#B94A48¨»b«/mi»«mi»Q«/mi»«/msub»«msub mathcolor=¨#B94A48¨»«mi mathcolor=¨#B94A48¨»h«/mi»«mi»Q«/mi»«/msub»«/math»


The base length of Q can be found by subtracting the base length of P from 13.5m:
13.5 m – 7.5 m = 6 m
(Note: P and Q are similar triangles, so this could also be used to find the length of the base of Q.)

«math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub mathcolor=¨#B94A48¨»«mi mathcolor=¨#B94A48¨»A«/mi»«mi»S«/mi»«/msub»«mo mathcolor=¨#B94A48¨»=«/mo»«mfrac mathcolor=¨#B94A48¨»«mn»1«/mn»«mn»2«/mn»«/mfrac»«mo mathcolor=¨#B94A48¨»(«/mo»«mn mathcolor=¨#B94A48¨»7«/mn»«mo mathcolor=¨#B94A48¨».«/mo»«mn mathcolor=¨#B94A48¨»5«/mn»«mo mathcolor=¨#B94A48¨»§#160;«/mo»«mi mathvariant=¨normal¨ mathcolor=¨#B94A48¨»m«/mi»«mo mathcolor=¨#B94A48¨»)«/mo»«mo mathcolor=¨#B94A48¨»(«/mo»«mn mathcolor=¨#B94A48¨»7«/mn»«mo mathcolor=¨#B94A48¨».«/mo»«mn mathcolor=¨#B94A48¨»5«/mn»«mo mathcolor=¨#B94A48¨»§#160;«/mo»«mi mathvariant=¨normal¨ mathcolor=¨#B94A48¨»m«/mi»«mo mathcolor=¨#B94A48¨»)«/mo»«mo mathcolor=¨#B94A48¨»+«/mo»«mfrac mathcolor=¨#B94A48¨»«mn»1«/mn»«mn»2«/mn»«/mfrac»«mo mathcolor=¨#B94A48¨»(«/mo»«mn mathcolor=¨#B94A48¨»6«/mn»«mo mathcolor=¨#B94A48¨»§#160;«/mo»«mi mathvariant=¨normal¨ mathcolor=¨#B94A48¨»m«/mi»«mo mathcolor=¨#B94A48¨»)«/mo»«mo mathcolor=¨#B94A48¨»(«/mo»«mn mathcolor=¨#B94A48¨»6«/mn»«mo mathcolor=¨#B94A48¨»§#160;«/mo»«mi mathvariant=¨normal¨ mathcolor=¨#B94A48¨»m«/mi»«mo mathcolor=¨#B94A48¨»)«/mo»«/math»

«math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub mathcolor=¨#B94A48¨»«mi mathcolor=¨#B94A48¨»A«/mi»«mi»S«/mi»«/msub»«mo mathcolor=¨#B94A48¨»=«/mo»«mn mathcolor=¨#B94A48¨»46«/mn»«mo mathcolor=¨#B94A48¨».«/mo»«mn mathcolor=¨#B94A48¨»125«/mn»«mo mathcolor=¨#B94A48¨»§#160;«/mo»«msup mathcolor=¨#B94A48¨»«mi mathvariant=¨normal¨ mathcolor=¨#B94A48¨»m«/mi»«mn»2«/mn»«/msup»«/math»


«math style=¨font-family:`Times New Roman`¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub mathcolor=¨#B94A48¨»«mi mathvariant=¨bold-italic¨ mathcolor=¨#B94A48¨»A«/mi»«mi mathvariant=¨bold¨»S«/mi»«/msub»«mo mathvariant=¨bold¨ mathcolor=¨#B94A48¨»=«/mo»«mn mathvariant=¨bold¨ mathcolor=¨#B94A48¨»46«/mn»«mo mathvariant=¨bold¨ mathcolor=¨#B94A48¨».«/mo»«mn mathvariant=¨bold¨ mathcolor=¨#B94A48¨»1«/mn»«mo mathvariant=¨bold¨ mathcolor=¨#B94A48¨»§#160;«/mo»«msup mathcolor=¨#B94A48¨»«mi mathvariant=¨bold¨ mathcolor=¨#B94A48¨»m«/mi»«mn mathvariant=¨bold¨»2«/mn»«/msup»«/math»