Unit 1A

Precalculus

Lesson 4: Transformations


Unless otherwise specified, transformations are applied in the following order: stretches and reflections, followed by translations.

The function «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»=«/mo»«msqrt»«mi»x«/mi»«/msqrt»«/mrow»«/mstyle»«/math» is reflected in the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-axis, horizontally stretched by a factor of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»4«/mn»«/mstyle»«/math», vertically stretched by a factor of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math», and translated «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«/mstyle»«/math» units up and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»1«/mn»«/mstyle»«/math» unit right. Determine the equation of the transformed function, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mrow»«/mstyle»«/math».

The table below shows the transformations applied one at a time.

Step 1: Reflection in the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-axis
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mo»§#8722;«/mo»«msqrt»«mi»x«/mi»«/msqrt»«/mrow»«/mstyle»«/math»
Step 2: Horizontally Stretched by a factor of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»4«/mn»«/mstyle»«/math»
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mo»§#8722;«/mo»«msqrt»«mfrac»«mn»1«/mn»«mn»4«/mn»«/mfrac»«mi»x«/mi»«/msqrt»«/mrow»«/mstyle»«/math»
Step 3: Vertically Stretched by a factor of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math»
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mo»§#8722;«/mo»«mn»2«/mn»«msqrt»«mfrac»«mn»1«/mn»«mn»4«/mn»«/mfrac»«mi»x«/mi»«/msqrt»«/mrow»«/mstyle»«/math»
Step 4: Translated «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«/mstyle»«/math» units up
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mo»§#8722;«/mo»«mn»2«/mn»«msqrt»«mfrac»«mn»1«/mn»«mn»4«/mn»«/mfrac»«mi»x«/mi»«/msqrt»«mo»+«/mo»«mn»3«/mn»«/mrow»«/mstyle»«/math»
Step 5: Translated «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»1«/mn»«/mstyle»«/math» unit to the right
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mo»§#8722;«/mo»«mn»2«/mn»«msqrt»«mfrac»«mn»1«/mn»«mn»4«/mn»«/mfrac»«mfenced»«mrow»«mi»x«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/mfenced»«/msqrt»«mo»+«/mo»«mn»3«/mn»«/mrow»«/mstyle»«/math»

Therefore, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mo»§#8722;«/mo»«mn»2«/mn»«msqrt»«mfrac»«mn»1«/mn»«mn»4«/mn»«/mfrac»«mfenced»«mrow»«mi»x«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/mfenced»«/msqrt»«mo»+«/mo»«mn»3«/mn»«/mrow»«/mstyle»«/math».
Graphically show, by a series of transformations, how the graph of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«mo»§#8722;«/mo»«mn»3«/mn»«msqrt»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«/msqrt»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mstyle»«/math» can be obtained from the graph of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«msqrt»«mi»x«/mi»«/msqrt»«/mrow»«/mstyle»«/math».

Step 1: Sketch a graph of the original function «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«msqrt»«mi»x«/mi»«/msqrt»«/mrow»«/mstyle»«/math».




Step 2: Vertically stretch the graph by a factor of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«/mstyle»«/math». Multiply all «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-coordinates by «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«/mstyle»«/math».




Step 3: Reflect the stretched graph in the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-axis. All «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-coordinates switch sign.




Step 4: Translate the graph to the right «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math» units and up «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»4«/mn»«/mstyle»«/math» units.




Skill Builder


For more information on combining transformations, click the Skill Builder button to access the Skill Builder page.