Unit 1A

Precalculus

Lesson 4: Transformations


Practice

Once you feel confident with transformations, click on the Practice tab and complete problems 1 to 3. Check your answers by going to the Solutions tab.

Instructions:
Click the Download File button to download a printable PDF of the questions. Answer each of the following practice questions on a separate piece of paper. Step by step solutions are provided under the Solutions tab. You will learn the material more thoroughly if you complete the questions before checking the answers.

1.
The graph of the function «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«msqrt»«mi»x«/mi»«/msqrt»«/mrow»«/mstyle»«/math» is stretched vertically by a factor of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfrac»«mn»1«/mn»«mn»3«/mn»«/mfrac»«/mstyle»«/math», translated down «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math» units and left «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»4«/mn»«/mstyle»«/math» units. State the equation and the domain of the transformed function, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mrow»«/mstyle»«/math».

2.
The following transformations are applied, in the order given, to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»t«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«msup»«mi»t«/mi»«mn»2«/mn»«/msup»«/mrow»«/mstyle»«/math». Determine the equation of the resulting function after each transformation, and sketch the graph of each.

i.
Vertical stretch by a factor of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math»

ii.
Horizontal stretch by a factor of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«/mstyle»«/math»

iii.
Reflection in the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»t«/mi»«/mstyle»«/math»-axis

iv.
Horizontal translation «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»4«/mn»«/mstyle»«/math» units right

v.
Vertical translation «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»1«/mn»«/mstyle»«/math» unit up

3.
The graphs of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mrow»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mstyle»«/math» are shown below. Identify the transformations applied to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mrow»«/mstyle»«/math» to obtain the graph of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mstyle»«/math». Write the equation of the function «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mstyle»«/math».




1.
The graph of the function «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«msqrt»«mi»x«/mi»«/msqrt»«/mrow»«/mstyle»«/math» is stretched vertically by a factor of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfrac»«mn»1«/mn»«mn»3«/mn»«/mfrac»«/mstyle»«/math», translated down «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math» units and left «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»4«/mn»«/mstyle»«/math» units. State the equation and the domain of the transformed function, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mrow»«/mstyle»«/math».

 Step 1: Vertical Stretch
 «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mfrac»«mn»1«/mn»«mn»3«/mn»«/mfrac»«msqrt»«mi»x«/mi»«/msqrt»«/mrow»«/mstyle»«/math»
 Step 2: Vertical Translation
 «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mfrac»«mn»1«/mn»«mn»3«/mn»«/mfrac»«msqrt»«mi»x«/mi»«/msqrt»«mo»§#8722;«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math»
 Step 3: Horizontal Translation
 «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mfrac»«mn»1«/mn»«mn»3«/mn»«/mfrac»«msqrt»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/msqrt»«mo»§#8722;«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math»


«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mtd»«mtd»«mo»§#8805;«/mo»«/mtd»«mtd»«mn»0«/mn»«/mtd»«/mtr»«mtr»«mtd»«mi»x«/mi»«/mtd»«mtd»«mo»§#8805;«/mo»«/mtd»«mtd»«mo»-«/mo»«mn»4«/mn»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

The domain of the transformed function «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mfrac»«mn»1«/mn»«mn»3«/mn»«/mfrac»«msqrt»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/msqrt»«mo»§#8722;«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math» is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfenced open=¨{¨ close=¨}¨»«mrow»«mi»x«/mi»«mi mathvariant=¨normal¨»|«/mi»«mi»x«/mi»«mo»§#8805;«/mo»«mo»§#8722;«/mo»«mn»4«/mn»«mi mathvariant=¨normal¨»,«/mi»«mspace width=¨0.33em¨/»«mi mathvariant=¨normal¨» «/mi»«mi»x«/mi»«mo»§#8712;«/mo»«mi mathvariant=¨normal¨»R«/mi»«/mrow»«/mfenced»«/mstyle»«/math».

2.
The following transformations are applied, in the order given, to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»t«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«msup»«mi»t«/mi»«mn»2«/mn»«/msup»«/mrow»«/mstyle»«/math». Determine the equation of the resulting function after each transformation, and sketch the graph of each.

i.
Vertical stretch by a factor of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math»

ii.
Horizontal stretch by a factor of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«/mstyle»«/math»

iii.
Reflection in the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»t«/mi»«/mstyle»«/math»-axis

iv.
Horizontal translation «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»4«/mn»«/mstyle»«/math» units right

v.
Vertical translation «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»1«/mn»«/mstyle»«/math» unit up


i.
After each transformation, the following functions result. «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mfenced»«mi»t«/mi»«/mfenced»«mo»=«/mo»«mn»2«/mn»«msup»«mi»t«/mi»«mn»2«/mn»«/msup»«/mrow»«/mstyle»«/math»

ii.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»t«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mn»2«/mn»«msup»«mfenced open=¨[¨ close=¨]¨»«mrow»«mfrac»«mn»1«/mn»«mn»3«/mn»«/mfrac»«mi»t«/mi»«/mrow»«/mfenced»«mn»2«/mn»«/msup»«/mrow»«/mstyle»«/math»

iii.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»t«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mo»§#8722;«/mo»«mn»2«/mn»«msup»«mfenced open=¨[¨ close=¨]¨»«mrow»«mfrac»«mn»1«/mn»«mn»3«/mn»«/mfrac»«mi»t«/mi»«/mrow»«/mfenced»«mn»2«/mn»«/msup»«/mrow»«/mstyle»«/math»

iv.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»t«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mo»§#8722;«/mo»«mn»2«/mn»«msup»«mfenced open=¨[¨ close=¨]¨»«mrow»«mfrac»«mn»1«/mn»«mn»3«/mn»«/mfrac»«mfenced»«mrow»«mi»t«/mi»«mo»§#8722;«/mo»«mn»4«/mn»«/mrow»«/mfenced»«/mrow»«/mfenced»«mn»2«/mn»«/msup»«/mrow»«/mstyle»«/math»

v.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»t«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mo»§#8722;«/mo»«mn»2«/mn»«msup»«mfenced open=¨[¨ close=¨]¨»«mrow»«mfrac»«mn»1«/mn»«mn»3«/mn»«/mfrac»«mfenced»«mrow»«mi»t«/mi»«mo»§#8722;«/mo»«mn»4«/mn»«/mrow»«/mfenced»«/mrow»«/mfenced»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mstyle»«/math»

Now, sketch the graph of each function.

i.
Graph the function.




ii.
Vertically stretch the graph by a factor of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math» units.


 

iii.
Horizontally stretch the graph by a factor of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«/mstyle»«/math».




iv.
Reflect the graph in the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-axis.


 

v.
Translate the graph to the right «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»4«/mn»«/mstyle»«/math» units and up «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»1«/mn»«/mstyle»«/math» unit.




3.
The graphs of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mrow»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mstyle»«/math» are shown below. Identify the transformations applied to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mrow»«/mstyle»«/math» to obtain the graph of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mstyle»«/math». Write the equation of the function «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mstyle»«/math».


 

The distance between the vertex of the graph of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mrow»«/mstyle»«/math» and its horizontal asymptote is twice that of the distance between the vertex of the graph of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mstyle»«/math» and its horizontal asymptote. This suggests a vertical stretch by a factor of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math» has been applied.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»=«/mo»«mn»2«/mn»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mrow»«/mstyle»«/math»
 
The width of the curve in «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mrow»«/mstyle»«/math» matches the width of the curve in «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mstyle»«/math», which suggests there has not been a horizontal stretch.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»=«/mo»«mn»2«/mn»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mrow»«/mstyle»«/math»
 
The graph of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mstyle»«/math» is a reflection of the graph of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mstyle»«/math» in the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-axis.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»=«/mo»«mo»-«/mo»«mn»2«/mn»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mstyle»«/math»
 
The vertex of the graph of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mstyle»«/math» has been translated «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math» units to the left to give «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mrow»«/mstyle»«/math».

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»=«/mo»«mo»§#8722;«/mo»«mn»2«/mn»«mi»f«/mi»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»2«/mn»«/mrow»«/mfenced»«/mrow»«/mstyle»«/math»

Finally, the horizontal asymptote of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mstyle»«/math» has been shifted down one unit on the graph of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mrow»«/mstyle»«/math».

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»=«/mo»«mo»§#8722;«/mo»«mn»2«/mn»«mi»f«/mi»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»2«/mn»«/mrow»«/mfenced»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/mstyle»«/math»