L6 Rational Expressions - Part 5
Completion requirements
Unit 1A
Precalculus
Lesson 6: Rational Expressions
Adding and Subtract Rational Expressions
To add and subtract fractions, determine the lowest common denominator (LCD) for the fractions, and then add or subtract the numerators. To add and subtract rational expressions, determine the lowest (or simplest) common denominator (LCD) for the rational expressions, and then add or subtract the numerators. To determine the LCD, it is helpful to factor the denominator of each expression, which is also necessary in order to determine the NPVs.Simplify the rational expression «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mfrac»«mrow»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»5«/mn»«/mrow»«mrow»«mn»2«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»9«/mn»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfrac»«mo»+«/mo»«mfrac»«mn»3«/mn»«mrow»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfrac»«/mrow»«/mstyle»«/math».
Identify any non-permissible values.
Step 1:
Factor the denominators and identify the NPVs.
The NPVs are «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»§#8800;«/mo»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mrow»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»§#8800;«/mo»«mo»§#8722;«/mo»«mn»4«/mn»«/mrow»«/mstyle»«/math».
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mfrac»«mrow»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»5«/mn»«/mrow»«mrow»«mn»2«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»9«/mn»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfrac»«mo»+«/mo»«mfrac»«mn»3«/mn»«mrow»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfrac»«mo»=«/mo»«mfrac»«mrow»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»5«/mn»«/mrow»«mrow»«mfenced»«mrow»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«/mrow»«/mfrac»«mo»+«/mo»«mfrac»«mn»3«/mn»«mrow»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfrac»«/mrow»«/mstyle»«/math»
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left center center right center left¨»«mtr»«mtd»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»0«/mn»«/mtd»«mtd/»«mtd/»«mtd»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»0«/mn»«/mtd»«/mtr»«mtr»«mtd»«mn»2«/mn»«mi»x«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»-«/mo»«mn»1«/mn»«/mtd»«mtd/»«mtd/»«mtd»«mi»x«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»-«/mo»«mn»4«/mn»«/mtd»«/mtr»«mtr»«mtd»«mi»x«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mtd»«mtd/»«mtd/»«mtd/»«mtd/»«mtd/»«/mtr»«/mtable»«/mstyle»«/math»
The NPVs are «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»§#8800;«/mo»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mrow»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»§#8800;«/mo»«mo»§#8722;«/mo»«mn»4«/mn»«/mrow»«/mstyle»«/math».
Step 2:
Determine the LCD.
The LCD is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mfenced»«mrow»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«/mrow»«/mstyle»«/math».
The LCD is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mfenced»«mrow»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«/mrow»«/mstyle»«/math».
Step 3:
Rewrite each rational expression as an equivalent rational expression with the LCD as the denominator, and simplify.
The simplified rational expression is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mfrac»«mrow»«mn»5«/mn»«mi»x«/mi»«mo»+«/mo»«mn»17«/mn»«/mrow»«mrow»«mfenced»«mrow»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«/mrow»«/mfrac»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mi»x«/mi»«mo»§#8800;«/mo»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mo»§#8722;«/mo»«mn»4«/mn»«/mrow»«/mstyle»«/math».
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mfrac»«mrow»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»5«/mn»«/mrow»«mrow»«mn»2«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»9«/mn»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfrac»«mo»+«/mo»«mfrac»«mn»3«/mn»«mrow»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfrac»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»5«/mn»«/mrow»«mrow»«mfenced»«mrow»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«/mrow»«/mfrac»«mo»+«/mo»«mfrac»«mrow»«mn»3«/mn»«mfenced
mathcolor=¨#0080FF¨»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«/mrow»«mrow»«mfenced»«mrow»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mfenced mathcolor=¨#0080FF¨»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»5«/mn»«/mrow»«mrow»«mfenced»«mrow»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«/mrow»«/mfrac»«mo»+«/mo»«mfrac»«mrow»«mn»3«/mn»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«/mrow»«mrow»«mfenced»«mrow»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»5«/mn»«mo»+«/mo»«mn»3«/mn»«mi»x«/mi»«mo»+«/mo»«mn»12«/mn»«/mrow»«mrow»«mfenced»«mrow»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mn»5«/mn»«mi»x«/mi»«mo»+«/mo»«mn»17«/mn»«/mrow»«mrow»«mfenced»«mrow»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«/mrow»«/mfrac»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»
Note that sometimes what appears to be the most simplified expression can actually be factored and further simplified. You will encounter an example of this nature in your Unit Assignment. |
The simplified rational expression is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mfrac»«mrow»«mn»5«/mn»«mi»x«/mi»«mo»+«/mo»«mn»17«/mn»«/mrow»«mrow»«mfenced»«mrow»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«/mrow»«/mfrac»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mi»x«/mi»«mo»§#8800;«/mo»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mo»§#8722;«/mo»«mn»4«/mn»«/mrow»«/mstyle»«/math».
The video below shows the simplification of rational expressions involving multiple operations.
The order of operations, BEDMAS, must be followed when simplifying rational expressions involving more than one operation.
The order of operations, BEDMAS, must be followed when simplifying rational expressions involving more than one operation.