Unit 1A

Precalculus

Lesson 8: Quadratic Inequalities


  1. Graphical Method
Solving a quadratic inequality graphically, when one side of the inequality is zero, involves finding the roots of the corresponding equation, graphing the corresponding function, and then identifying the region(s) on the graph that satisfy the inequality.

Factor the quadratic portion of the inequality determined from the scenario described above.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»25«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»100«/mn»«/mtd»«mtd»«mo»§#8805;«/mo»«/mtd»«mtd»«mn»0«/mn»«/mtd»«/mtr»«mtr»«mtd»«mo»§#8722;«/mo»«mi mathvariant=¨normal¨»(«/mi»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»25«/mn»«mi»x«/mi»«mo»+«/mo»«mn»100«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»§#8805;«/mo»«/mtd»«mtd»«mn»0«/mn»«/mtd»«/mtr»«mtr»«mtd»«mo»§#8722;«/mo»«mfenced»«mrow»«mi»x«/mi»«mo»§#8722;«/mo»«mn»5«/mn»«/mrow»«/mfenced»«mfenced»«mrow»«mi»x«/mi»«mo»§#8722;«/mo»«mn»20«/mn»«/mrow»«/mfenced»«/mtd»«mtd»«mo»§#8805;«/mo»«/mtd»«mtd»«mn»0«/mn»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

The roots of the corresponding quadratic equation «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»0«/mn»«mo»=«/mo»«mo»§#8722;«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mo»§#8722;«/mo»«mn»5«/mn»«mi»)(«/mi»«mi»x«/mi»«mo»§#8722;«/mo»«mn»20«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mstyle»«/math» are «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mn»5«/mn»«/mrow»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mn»20«/mn»«/mrow»«/mstyle»«/math». These roots correspond to the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-intercepts of the graph of the corresponding function «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»=«/mo»«mo»§#8722;«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mo»§#8722;«/mo»«mn»5«/mn»«mi»)(«/mi»«mi»x«/mi»«mo»§#8722;«/mo»«mn»20«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mstyle»«/math». Because the leading coefficient of the function is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mo»-«/mo»«mn»1«/mn»«/mrow»«/mstyle»«/math», the graph will open downward, as shown below.



To find the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-coordinate of the vertex of the graph, find the middle value between the two «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-intercepts. To find the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-coordinate of the vertex of the graph, substitute the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-coordinate of the vertex into the equation of the function.


The inequality «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mo»§#8722;«/mo»«mfenced»«mrow»«mi»x«/mi»«mo»§#8722;«/mo»«mn»5«/mn»«/mrow»«/mfenced»«mfenced»«mrow»«mi»x«/mi»«mo»§#8722;«/mo»«mn»20«/mn»«/mrow»«/mfenced»«mo»§#8805;«/mo»«mn»0«/mn»«/mrow»«/mstyle»«/math» is true everywhere the graph of the corresponding function lies at or above the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-axis. This occurs between «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mn»5«/mn»«/mrow»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«mo»=«/mo»«mn»20«/mn»«/mstyle»«/math». This solution can be written as «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»5«/mn»«mo»§#8804;«/mo»«mi»x«/mi»«mo»§#8804;«/mo»«mn»20«/mn»«/mrow»«/mstyle»«/math» or, in interval notation, as «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfenced open=¨[¨ close=¨]¨»«mrow»«mn»5«/mn»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mn»20«/mn»«/mrow»«/mfenced»«/mstyle»«/math».