Unit 1B

Limits

Lesson 4: Limits at Infinity


According to the Big Bang Theory, the universe began in a colossal explosion roughly «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»13«/mn»«mo».«/mo»«mn»7«/mn»«/mrow»«/mstyle»«/math» billion years ago. Ever since that moment, the universe has been expanding. Astronomers are currently studying what the future expansion of the universe will look like. One of the many possibilities is that the universe will expand forever. In an odd sort of paradox, one expansion possibility is that the universe expands forever, but eventually reaches a maximum size. While this might seem like a contradiction, combining the concepts of limits with the idea of infinity enables scientists to slowly piece together the future of the entire cosmos!

Just as when studying the future of the universe, when graphing functions, it is important to understand what happens to the graph as «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» increases «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfenced»«mrow»«mi»x«/mi»«mo»§#8594;«/mo»«mo»+«/mo»«mo»§#8734;«/mo»«/mrow»«/mfenced»«/mstyle»«/math» or decreases «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfenced»«mrow»«mi»x«/mi»«mo»§#8594;«/mo»«mo»§#8722;«/mo»«mo»§#8734;«/mo»«/mrow»«/mfenced»«/mstyle»«/math» without bound. To begin to understand this end behaviour of functions, consider the function «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mfrac»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfrac»«/mrow»«/mstyle»«/math», graphed below.







It appears the value of the function gets closer and closer to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»1«/mn»«/mstyle»«/math» as the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-value increases and decreases towards positive and negative infinity, respectively. The graph below shows the same function with a different scale along the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-axis.




As seen on this graph, the value of the function gets very close to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»1«/mn»«/mstyle»«/math», but does not appear to reach or cross it. In this case, the line «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«mo»=«/mo»«mn»1«/mn»«/mstyle»«/math» is a horizontal asymptote.

The dotted line on the graph below indicates the horizontal asymptote.