Unit 1B

Limits

Lesson 4: Limits at Infinity


Now that algebraic methods for handling what happens to functions when «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» approaches positive and negative infinity have been discussed and practiced, graph sketching given limit information can be performed.

View the following video, Limits, Graphing, and End-Behavior, to learn how to sketch the graph of a function as «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» approaches infinity.

Sketch the graph of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«mfrac»«mi»x«/mi»«msup»«mfenced»«mrow»«mi»x«/mi»«mo»§#8722;«/mo»«mn»5«/mn»«/mrow»«/mfenced»«mn»2«/mn»«/msup»«/mfrac»«/mrow»«/mstyle»«/math».

To graph the function, first determine the equation of the vertical asymptote. A vertical asymptote occurs where the function is undefined. The vertical asymptote of this function is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mn»5«/mn»«/mrow»«/mstyle»«/math».

Now, find the one-sided limits as «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» approaches «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»5«/mn»«/mstyle»«/math» from the left and the right to determine the behaviour of the function near the vertical asymptote.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨left¨»«mtr»«mtd»«munder»«mi»lim«/mi»«mrow»«mi»x«/mi»«mo»§#8594;«/mo»«msup»«mn»5«/mn»«mo»-«/mo»«/msup»«/mrow»«/munder»«mfrac»«mi»x«/mi»«msup»«mfenced»«mrow»«mi»x«/mi»«mo»§#8722;«/mo»«mn»5«/mn»«/mrow»«/mfenced»«mn»2«/mn»«/msup»«/mfrac»«mo»=«/mo»«mo»§#8734;«/mo»«/mtd»«/mtr»«mtr»«mtd»«munder»«mi»lim«/mi»«mrow»«mi»x«/mi»«mo»§#8594;«/mo»«msup»«mn»5«/mn»«mo»+«/mo»«/msup»«/mrow»«/munder»«mfrac»«mi»x«/mi»«msup»«mfenced»«mrow»«mi»x«/mi»«mo»§#8722;«/mo»«mn»5«/mn»«/mrow»«/mfenced»«mn»2«/mn»«/msup»«/mfrac»«mo»=«/mo»«mo»§#8734;«/mo»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

Next, determine the equation of the horizontal asymptote. This can be determined by evaluating the limits of the function at positive and negative infinity.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨left¨»«mtr»«mtd»«munder»«mi»lim«/mi»«mrow»«mi»x«/mi»«mo»§#8594;«/mo»«mo»§#8734;«/mo»«/mrow»«/munder»«mfrac»«mi»x«/mi»«msup»«mfenced»«mrow»«mi»x«/mi»«mo»§#8722;«/mo»«mn»5«/mn»«/mrow»«/mfenced»«mn»2«/mn»«/msup»«/mfrac»«mo»=«/mo»«mn»0«/mn»«/mtd»«/mtr»«mtr»«mtd»«munder»«mi»lim«/mi»«mrow»«mi»x«/mi»«mo»§#8594;«/mo»«mo»§#8722;«/mo»«mo»§#8734;«/mo»«/mrow»«/munder»«mfrac»«mi»x«/mi»«msup»«mfenced»«mrow»«mi»x«/mi»«mo»§#8722;«/mo»«mn»5«/mn»«/mrow»«/mfenced»«mn»2«/mn»«/msup»«/mfrac»«mo»=«/mo»«mn»0«/mn»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

The horizontal asymptote is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«mn»0«/mn»«/mrow»«/mstyle»«/math».

Determine the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»- and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-intercepts.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»y«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mi»x«/mi»«msup»«mfenced»«mrow»«mi»x«/mi»«mo»§#8722;«/mo»«mn»5«/mn»«/mrow»«/mfenced»«mn»2«/mn»«/msup»«/mfrac»«/mtd»«/mtr»«mtr»«mtd»«mi»y«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mn»0«/mn»«msup»«mfenced»«mrow»«mn»0«/mn»«mo»§#8722;«/mo»«mn»5«/mn»«/mrow»«/mfenced»«mn»2«/mn»«/msup»«/mfrac»«/mtd»«/mtr»«mtr»«mtd»«mi»y«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»0«/mn»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

The graph passes through the origin, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfenced»«mrow»«mn»0«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mn»0«/mn»«/mrow»«/mfenced»«/mstyle»«/math».

Note that the graph of the function passes through the horizontal asymptote «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«mn»0«/mn»«/mrow»«/mstyle»«/math» at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfenced»«mrow»«mn»0«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mn»0«/mn»«/mrow»«/mfenced»«/mstyle»«/math». While graphs do not pass through vertical asymptotes, they often do pass through horizontal asymptotes at or near the origin. Recall that when horizontal asymptotes are determined, the focus is on the behaviour of the function as «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» becomes increasingly large positive and negative. Although the graph of the function passes through «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfenced»«mrow»«mn»0«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mn»0«/mn»«/mrow»«/mfenced»«/mstyle»«/math», it still does approach, but does not reach, a value of zero as «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» approaches positive and negative infinity.


Click


here for the solution.