Unit 1B

Limits

Lesson 6: Limits of Sequences and Series


Determine the general term for the sequence «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mo»§#8722;«/mo»«mn»1«/mn»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mfrac»«mn»1«/mn»«mn»4«/mn»«/mfrac»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»9«/mn»«/mfrac»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mfrac»«mn»1«/mn»«mn»16«/mn»«/mfrac»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»25«/mn»«/mfrac»«mo»,«/mo»«mo»§#160;«/mo»«mo»...«/mo»«/mrow»«/mstyle»«/math»

The general term of this sequence requires consideration of two components.

i.
The denominators are increasing. Each is the square of the term number. This can be represented by «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«msub»«mi»t«/mi»«mi»n«/mi»«/msub»«mo»=«/mo»«mfrac»«mn»1«/mn»«msup»«mi»n«/mi»«mn»2«/mn»«/msup»«/mfrac»«/mrow»«/mstyle»«/math».

ii.
The terms have alternating signs. This can be represented by «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«msub»«mi»t«/mi»«mi»n«/mi»«/msub»«mo»=«/mo»«msup»«mfenced»«mrow»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mi»n«/mi»«/msup»«/mrow»«/mstyle»«/math».

Combining these two components, the general term is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«msub»«mi»t«/mi»«mi»n«/mi»«/msub»«mo»=«/mo»«msup»«mfenced»«mrow»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mi»n«/mi»«/msup»«mfrac»«mn»1«/mn»«msup»«mi»n«/mi»«mn»2«/mn»«/msup»«/mfrac»«/mrow»«/mstyle»«/math».

Limits of Sequences

Although infinite sequences continue indefinitely, the general term, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«msub»«mi»t«/mi»«mi»n«/mi»«/msub»«/mstyle»«/math», can approach a specific number, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»L«/mi»«/mstyle»«/math», as the number of terms approaches infinity. This can be represented by a limit.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«munder»«mi»lim«/mi»«mrow»«mi»n«/mi»«mo»§#8594;«/mo»«mo»§#8734;«/mo»«/mrow»«/munder»«msub»«mi»t«/mi»«mi»n«/mi»«/msub»«mo»=«/mo»«mi»L«/mi»«/mrow»«/mstyle»«/math»

Consider the sequence formed by the general term «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«msub»«mi»t«/mi»«mi»n«/mi»«/msub»«mo»=«/mo»«mfrac»«mn»1«/mn»«msup»«mi»n«/mi»«mn»2«/mn»«/msup»«/mfrac»«/mrow»«/mstyle»«/math».

The first five terms of the sequence are «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»1«/mn»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mfrac»«mn»1«/mn»«mn»4«/mn»«/mfrac»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mfrac»«mn»1«/mn»«mn»9«/mn»«/mfrac»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mfrac»«mn»1«/mn»«mn»16«/mn»«/mfrac»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mfrac»«mn»1«/mn»«mn»25«/mn»«/mfrac»«/mrow»«/mstyle»«/math».

Graphing these terms helps to visualize the behaviour of the sequence function.




As the term number, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»n«/mi»«/mstyle»«/math», gets larger, the term gets closer and closer to zero. This is the called the limit of the sequence.

For «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«msub»«mi»t«/mi»«mi»n«/mi»«/msub»«mo»=«/mo»«mfrac»«mn»1«/mn»«msup»«mi»n«/mi»«mn»2«/mn»«/msup»«/mfrac»«/mrow»«/mstyle»«/math», the limit of the sequence is as follows.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«munder»«mi»lim«/mi»«mrow»«mi»n«/mi»«mo»§#8594;«/mo»«mo»§#8734;«/mo»«/mrow»«/munder»«mfrac»«mn»1«/mn»«msup»«mi»n«/mi»«mn»2«/mn»«/msup»«/mfrac»«mo»=«/mo»«mn»0«/mn»«/mrow»«/mstyle»«/math»

Compare this sequence to the sequence formed by «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«msub»«mi»t«/mi»«mi»n«/mi»«/msub»«mo»=«/mo»«msup»«mi»n«/mi»«mn»2«/mn»«/msup»«/mrow»«/mstyle»«/math». Graph the first five terms, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»1«/mn»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mn»4«/mn»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mn»9«/mn»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mn»16«/mn»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mn»25«/mn»«/mrow»«/mstyle»«/math», to visualize the behaviour of the sequence function.




Unlike the sequence defined by «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«msub»«mi»t«/mi»«mi»n«/mi»«/msub»«mo»=«/mo»«mfrac»«mn»1«/mn»«msup»«mi»n«/mi»«mn»2«/mn»«/msup»«/mfrac»«/mrow»«/mstyle»«/math», this sequence, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«msub»«mi»t«/mi»«mi»n«/mi»«/msub»«mo»=«/mo»«msup»«mi»n«/mi»«mn»2«/mn»«/msup»«/mrow»«/mstyle»«/math», keeps increasing towards infinity. It does not approach a specific number. Therefore, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«munder»«mi»lim«/mi»«mrow»«mi»n«/mi»«mo»§#8594;«/mo»«mo»§#8734;«/mo»«/mrow»«/munder»«msup»«mi»n«/mi»«mn»2«/mn»«/msup»«/mrow»«/mstyle»«/math» does not exist.

If the terms of an infinite sequence approach a unique finite value, the sequence is called a convergent sequence. A sequence non-convergent sequence does not approach a specific number and is called a divergent sequence. An example of a convergent sequence is produced by the general term «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«msub»«mi»t«/mi»«mi»n«/mi»«/msub»«mo»=«/mo»«mfrac»«mn»1«/mn»«msup»«mi»n«/mi»«mn»2«/mn»«/msup»«/mfrac»«/mrow»«/mstyle»«/math», whereas an example of a divergent sequence is produced by the general term «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«msub»«mi»t«/mi»«mi»n«/mi»«/msub»«mo»=«/mo»«msup»«mi»n«/mi»«mn»2«/mn»«/msup»«/mrow»«/mstyle»«/math».


It is important to note that as soon as a function is defined as a sequence, it is implied the domain is the set of natural numbers, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»1«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mn»2«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mn»3«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mo»§#8230;«/mo»«/mrow»«/mstyle»«/math».

Determine if the sequence «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»n«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mn»4«/mn»«mo»§#8722;«/mo»«mi»n«/mi»«/mrow»«/mstyle»«/math» converges or diverges by graphing the first «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»6«/mn»«/mstyle»«/math» terms of the sequence.

Set up a table of values to determine the values of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»n«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mn»4«/mn»«mo»§#8722;«/mo»«mi»n«/mi»«/mrow»«/mstyle»«/math» for «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»n«/mi»«/mstyle»«/math»-values of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»1«/mn»«/mstyle»«/math» to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»6«/mn»«/mstyle»«/math». Graph the results.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»n«/mi»«/mstyle»«/math» «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»n«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mn»4«/mn»«mo»§#8722;«/mo»«mi»n«/mi»«/mrow»«/mstyle»«/math»
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»1«/mn»«/mstyle»«/math» «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«/mstyle»«/math»
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math» «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math»
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«/mstyle»«/math» «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»1«/mn»«/mstyle»«/math»
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»4«/mn»«/mstyle»«/math» «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»0«/mn»«/mstyle»«/math»
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»5«/mn»«/mstyle»«/math» «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»-«/mo»«mn»1«/mn»«/mstyle»«/math»
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»6«/mn»«/mstyle»«/math» «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»-«/mo»«mn»2«/mn»«/mstyle»«/math»




This is a divergent sequence because the sequence continues to decrease at a constant rate and does not approach a specific number.