Unit 2A

Derivatives Part 1

Lesson 1: Limits, Secants, and Tangents


Calculus was invented in the 1600s by Isaac Newton and Gottfried Leibniz to help describe the physical world. The video History of Calculus provides a brief history of the early purpose of calculus and serves as an introduction to Unit 2, Derivatives. Derivatives will be described and explained later in this Lesson.

As described in the video, calculus was used to determine the slope of curves. At the time of Newton and Leibniz, the equations of straight lines, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«mi»m«/mi»«mi»x«/mi»«mo»+«/mo»«mi»b«/mi»«/mrow»«/mstyle»«/math», and the constant slopes of those lines were well understood.

The graph shown represents a linear function. Recall from previous courses, the equation of a line can be expressed in the form «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«mi»m«/mi»«mi»x«/mi»«mo»+«/mo»«mi»b«/mi»«/mrow»«/mstyle»«/math», where the slope, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»m«/mi»«/mstyle»«/math», is constant and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»b«/mi»«/mstyle»«/math» is the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-intercept.




The slope of a line is calculated using the formula «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»m«/mi»«mo»=«/mo»«mfrac»«mrow»«msub»«mi»y«/mi»«mn»2«/mn»«/msub»«mo»§#8722;«/mo»«msub»«mi»y«/mi»«mn»1«/mn»«/msub»«/mrow»«mrow»«msub»«mi»x«/mi»«mn»2«/mn»«/msub»«mo»§#8722;«/mo»«msub»«mi»x«/mi»«mn»1«/mn»«/msub»«/mrow»«/mfrac»«/mrow»«/mstyle»«/math», where «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfenced»«mrow»«msub»«mi»x«/mi»«mi»a«/mi»«/msub»«mi mathvariant=¨normal¨»,«/mi»«mspace width=¨0.33em¨/»«msub»«mi»y«/mi»«mi»a«/mi»«/msub»«/mrow»«/mfenced»«/mstyle»«/math» represents any point on the line. Another way of writing the slope formula is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»m«/mi»«mo»=«/mo»«mfrac»«mrow»«mo»§#9651;«/mo»«mi»y«/mi»«/mrow»«mrow»«mo»§#9651;«/mo»«mi»x«/mi»«/mrow»«/mfrac»«/mrow»«/mstyle»«/math». This is read as “the change in «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math» divided by the change in «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»”.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»m«/mi»«mo»=«/mo»«mfrac»«mrow»«mo»§#9651;«/mo»«mi»y«/mi»«/mrow»«mrow»«mo»§#9651;«/mo»«mi»x«/mi»«/mrow»«/mfrac»«mo»=«/mo»«mfrac»«mrow»«msub»«mi»y«/mi»«mn»2«/mn»«/msub»«mo»§#8722;«/mo»«msub»«mi»y«/mi»«mn»1«/mn»«/msub»«/mrow»«mrow»«msub»«mi»x«/mi»«mn»2«/mn»«/msub»«mo»§#8722;«/mo»«msub»«mi»x«/mi»«mn»1«/mn»«/msub»«/mrow»«/mfrac»«/mrow»«/mstyle»«/math»




From the graph, it can be seen the change in «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math» is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math» units and the change in «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»4«/mn»«/mstyle»«/math» units. The slope of the line can be calculated as follows.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»m«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mo»§#9651;«/mo»«mi»y«/mi»«/mrow»«mrow»«mo»§#9651;«/mo»«mi»x«/mi»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mn»2«/mn»«mn»4«/mn»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

The slope of the line is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»m«/mi»«mo»=«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mrow»«/mstyle»«/math», which corresponds to the equation of the line, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«mi»x«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/mstyle»«/math».