L1 Limits, Secants, and Tangents - Part 6
Completion requirements
Unit 2A
Derivatives Part 1
Lesson 1: Limits, Secants, and Tangents
The following graph shows an alternative way of expressing the slope of a line tangent at any point to a curve.

By setting the horizontal separation of the two points on the curve as «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»h«/mi»«/mstyle»«/math», the slope of a tangent at any point formula can be expressed as follows.
This formula is the foundation of differential calculus and will be used extensively throughout the next lesson.

By setting the horizontal separation of the two points on the curve as «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»h«/mi»«/mstyle»«/math», the slope of a tangent at any point formula can be expressed as follows.
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«msub»«mi»m«/mi»«mrow»«mi»tan«/mi»«mi»g«/mi»«mi»e«/mi»«mi»n«/mi»«mi»t«/mi»«/mrow»«/msub»«mo»(«/mo»«mi»x«/mi»«mo»)«/mo»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«munder»«mi»lim«/mi»«mrow»«mo»§#9651;«/mo»«mi»x«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mfrac»«mrow»«mo»§#9651;«/mo»«mi»y«/mi»«/mrow»«mrow»«mo»§#9651;«/mo»«mi»x«/mi»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mfrac»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mo»+«/mo»«mi»h«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8722;«/mo»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mrow»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mo»+«/mo»«mi»h«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8722;«/mo»«mi»x«/mi»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mfrac»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mo»+«/mo»«mi»h«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8722;«/mo»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mi»h«/mi»«/mfrac»«/mtd»«/mtr»«/mtable»«/math»
This formula is the foundation of differential calculus and will be used extensively throughout the next lesson.
Determine the slope of the line tangent to the curve «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mstyle»«/math»
at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math».
The slope at any point on the curve can be found using the formula «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»m«/mi»«mrow»«mi»t«/mi»«mi»a«/mi»«mi»n«/mi»«mi»g«/mi»«mi»e«/mi»«mi»n«/mi»«mi»t«/mi»«/mrow»«/msub»«mo»(«/mo»«mi»x«/mi»«mo»)«/mo»«mo»=«/mo»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mfrac»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mo»+«/mo»«mi»h«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8722;«/mo»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mi»h«/mi»«/mfrac»«/math».
For «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math», the slope is as follows.
The graph below confirms the slope of the tangent line at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math» is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»4«/mn»«/mstyle»«/math».

This formula is used to find the derivative of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mrow»«/mstyle»«/math» and will be discussed in greater detail in the next Lesson. The remainder of units 2A and 2B will focus on finding the slopes of tangent lines using a variety of derivative rules.
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨center right left¨»«mtr»«mtd»«msub»«mi»m«/mi»«mrow»«mi»t«/mi»«mi»a«/mi»«mi»n«/mi»«mi»g«/mi»«mi»e«/mi»«mi»n«/mi»«mi»t«/mi»«/mrow»«/msub»«mo»(«/mo»«mi»x«/mi»«mo»)«/mo»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mfrac»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mo»+«/mo»«mi»h«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8722;«/mo»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mi»h«/mi»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mfrac»«mfenced open=¨[¨ close=¨]¨»«mrow»«msup»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mi»h«/mi»«/mrow»«/mfenced»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«mo»§#8722;«/mo»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«/mrow»«/mfenced»«mi»h«/mi»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mfrac»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»2«/mn»«mi»x«/mi»«mi»h«/mi»«mo»+«/mo»«msup»«mi»h«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mi»h«/mi»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mfrac»«mrow»«mn»2«/mn»«mi»x«/mi»«mi»h«/mi»«mo»+«/mo»«msup»«mi»h«/mi»«mn»2«/mn»«/msup»«/mrow»«mi»h«/mi»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mfrac»«mrow»«mi»h«/mi»«mi mathvariant=¨normal¨»(«/mi»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mi»h«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mi»h«/mi»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mi mathvariant=¨normal¨»(«/mi»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mi»h«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»2«/mn»«mi»x«/mi»«/mtd»«/mtr»«/mtable»«/math»
For «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math», the slope is as follows.
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»m«/mi»«mo»(«/mo»«mi»x«/mi»«mo»)«/mo»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»2«/mn»«mi»x«/mi»«/mtd»«/mtr»«mtr»«mtd»«mi»m«/mi»«mo»(«/mo»«mn»2«/mn»«mo»)«/mo»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»2«/mn»«mi mathvariant=¨normal¨»(«/mi»«mn»2«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»4«/mn»«/mtd»«/mtr»«/mtable»«/math»
The graph below confirms the slope of the tangent line at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math» is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»4«/mn»«/mstyle»«/math».

This formula is used to find the derivative of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mrow»«/mstyle»«/math» and will be discussed in greater detail in the next Lesson. The remainder of units 2A and 2B will focus on finding the slopes of tangent lines using a variety of derivative rules.