Unit 2A

Derivatives Part 1

Lesson 2: Definition of a Derivative


The video Introduction to the Derivative illustrates the connection between the two formulas derived in the previous lesson.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»m«/mi»«mo»=«/mo»«munder»«mi»lim«/mi»«mrow»«mi»x«/mi»«mo»§#8594;«/mo»«mi»a«/mi»«/mrow»«/munder»«mfrac»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8722;«/mo»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»a«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mrow»«mi»x«/mi»«mo»§#8722;«/mo»«mi»a«/mi»«/mrow»«/mfrac»«/mrow»«/mstyle»«/math»

and

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»m«/mi»«mo»=«/mo»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mfrac»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mo»+«/mo»«mi»h«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8722;«/mo»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mi»h«/mi»«/mfrac»«/mrow»«/mstyle»«/math»

In the video, the term instantaneous slope is used for calculating the derivative of any function at any point. For the remainder of this lesson, the term slope is used.

As seen in the video, there are many different derivative notations that can be used.

Derivative Notation

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable»«mtr»«mtd»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«mtd/»«mtd/»«mtd»«mi»y«/mi»«mo mathvariant=¨italic¨»`«/mo»«/mtd»«mtd/»«mtd/»«mtd»«mfrac»«mrow»«mi»d«/mi»«mi»y«/mi»«/mrow»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«/mfrac»«/mtd»«mtd/»«mtd/»«mtd»«mfrac»«mi»d«/mi»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«/mfrac»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mtd»«mtd»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«/mtd»«mtd»«mo»§#160;«/mo»«mo»§#160;«/mo»«/mtd»«mtd»«msub»«mi»D«/mi»«mi»x«/mi»«/msub»«mi»y«/mi»«/mtd»«mtd/»«mtd/»«mtd»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mo»(«/mo»«mi»a«/mi»«mo»)«/mo»«/mtd»«mtd/»«/mtr»«/mtable»«mtable»«mtr»«mtd/»«mtd»«msub»«mfenced open=¨¨ close=¨|¨»«mfrac»«mrow»«mi»d«/mi»«mi»y«/mi»«/mrow»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«/mfrac»«/mfenced»«mrow»«mi»x«/mi»«mo»=«/mo»«mi»a«/mi»«/mrow»«/msub»«/mtd»«mtd/»«/mtr»«/mtable»«/math»

Many of the above notations are used throughout this course.

The first three notations are the most common and are read as follows.

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/math» – ‘«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»f«/mi»«/mstyle»«/math» prime at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»’ or ‘the derivative of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mrow»«/mstyle»«/math»’
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»y«/mi»«mo mathvariant=¨italic¨»`«/mo»«/math»– ‘«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math» prime’ or ‘the derivative of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»’
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfrac»«mrow»«mi»d«/mi»«mi»y«/mi»«/mrow»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«/mfrac»«/mstyle»«/math» – ‘the derivative of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math» with respect to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»’

The formula «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mfenced»«mi»x«/mi»«/mfenced»«mo»=«/mo»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mfrac»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mo»+«/mo»«mi»h«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8722;«/mo»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mi»h«/mi»«/mfrac»«/math» represents the definition of a derivative. It is also referred to as the first principle of derivatives.