L2 Definition of a Derivative - Part 4
Completion requirements
Unit 2A
Derivatives Part 1
Lesson 2: Definition of a Derivative
How does the graph of a function relate to the graph of the function’s derivative? Watch the video Graphs of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mrow»«/mstyle»«/math»,
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi mathvariant=¨normal¨» «/mi»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi»),«/mi»«/math» and Differentiability to see how the graph of a function’s derivative
can be drawn from the graph of the function itself.
Given the graph of the function «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«/mrow»«/mstyle»«/math»,
sketch the graph of its derivative.

Step 1:
Find the derivative of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«/mrow»«/mstyle»«/math»
using first principles.
The derivative «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mn»3«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/math» represents the
slope of the line tangent to the curve for all «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math».
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mfrac»«mrow»«mi»f«/mi»«mi
mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mo»+«/mo»«mi»h«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8722;«/mo»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mi»h«/mi»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mfrac»«mrow»«msup»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mi»h«/mi»«/mrow»«/mfenced»«mn»3«/mn»«/msup»«mo»§#8722;«/mo»«mfenced»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«/mfenced»«/mrow»«mi»h«/mi»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mfrac»«mrow»«mfenced
open=¨[¨ close=¨]¨»«mrow»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mo»+«/mo»«mi»h«/mi»«mi mathvariant=¨normal¨»)«/mi»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»2«/mn»«mi»x«/mi»«mi»h«/mi»«mo»+«/mo»«msup»«mi»h«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfenced»«/mrow»«/mfenced»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«/mrow»«mi»h«/mi»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mfenced»«mfrac»«mrow»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»+«/mo»«mn»3«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mi»h«/mi»«mo»+«/mo»«mn»3«/mn»«mi»x«/mi»«msup»«mi»h«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«msup»«mi»h«/mi»«mn»3«/mn»«/msup»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«/mrow»«mi»h«/mi»«/mfrac»«/mfenced»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mfrac»«mrow»«mn»3«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mi»h«/mi»«mo»+«/mo»«mn»3«/mn»«mi»x«/mi»«msup»«mi»h«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«msup»«mi»h«/mi»«mn»3«/mn»«/msup»«/mrow»«mi»h«/mi»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mfrac»«mrow»«mi»h«/mi»«mi
mathvariant=¨normal¨»(«/mi»«mn»3«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»3«/mn»«mi»x«/mi»«mi»h«/mi»«mo»+«/mo»«msup»«mi»h«/mi»«mn»2«/mn»«/msup»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mi»h«/mi»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mfenced»«mrow»«mn»3«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»3«/mn»«mi»x«/mi»«mi»h«/mi»«mo»+«/mo»«msup»«mi»h«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfenced»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»3«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»3«/mn»«mi»x«/mi»«mi
mathvariant=¨normal¨»(«/mi»«mn»0«/mn»«mi mathvariant=¨normal¨»)«/mi»«mo»+«/mo»«mi mathvariant=¨normal¨»(«/mi»«mn»0«/mn»«msup»«mi mathvariant=¨normal¨»)«/mi»«mn»2«/mn»«/msup»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»3«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mtd»«/mtr»«/mtable»«/math»
Hint: Expand the term «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«msup»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mi»h«/mi»«/mrow»«/mfenced»«mn»3«/mn»«/msup»«/mstyle»«/math» by applying the distributive property. |
Step 2:
Create a table of values to calculate the slope of the function for a variety of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-values.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» | «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«mo»`«/mo»«mo»=«/mo»«mn»3«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mstyle»«/math» |
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»-«/mo»«mn»1«/mn»«/mstyle»«/math» | «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«/mstyle»«/math» |
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»0«/mn»«/mstyle»«/math» | «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»0«/mn»«/mstyle»«/math» |
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»1«/mn»«/mstyle»«/math» | «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«/mstyle»«/math» |
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math» | «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»12«/mn»«/mstyle»«/math» |
Step 3:
Plot the points and connect them with a smooth curve.
Note that the graph of the derivative function is a parabola, which coincides with the equation of the derivative function, «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mn»3«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/math».

Note that the graph of the derivative function is a parabola, which coincides with the equation of the derivative function, «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mn»3«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/math».

Alternative solution approach as introduced in the video Graphs of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mrow»«/mstyle»«/math»,
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi mathvariant=¨normal¨» «/mi»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi»),«/mi»«/math» and Differentiability.
Starting from the bottom left of the original function, the slopes of the lines tangent to the curve are positive. Moving up and to the right, the slopes remain positive, but the curve is less steep, so the slope decreases. This continues until the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-axis, where the slope of the line tangent to the curve is zero. Moving up and to the right some more, the slopes are positive again and continue to increase as the curve becomes more steep.
The derivative of a function does not always exist. If the derived function «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/math» is defined at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mi»a«/mi»«/mrow»«/mstyle»«/math», that is if «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»a«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mfrac»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»a«/mi»«mo»+«/mo»«mi»h«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8722;«/mo»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»a«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mi»h«/mi»«/mfrac»«/math» exists, the original function is said to be differentiable at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mi»a«/mi»«/mrow»«/mstyle»«/math».
Recall from Unit 1, for a limit to exist, the related one-sided limits must exist and they must be equal. For example, for «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mfrac»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»a«/mi»«mo»+«/mo»«mi»h«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8722;«/mo»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»a«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mi»h«/mi»«/mfrac»«/mrow»«/mstyle»«/math» to exist, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«msup»«mn»0«/mn»«mo»§#8722;«/mo»«/msup»«/mrow»«/munder»«mfrac»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»a«/mi»«mo»+«/mo»«mi»h«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8722;«/mo»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»a«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mi»h«/mi»«/mfrac»«mo»=«/mo»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«msup»«mn»0«/mn»«mo»+«/mo»«/msup»«/mrow»«/munder»«mfrac»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»a«/mi»«mo»+«/mo»«mi»h«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8722;«/mo»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»a«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mi»h«/mi»«/mfrac»«/mrow»«/mstyle»«/math».
A function may be differentiable over an interval or it may be differentiable over the entire set of real numbers.

Starting from the bottom left of the original function, the slopes of the lines tangent to the curve are positive. Moving up and to the right, the slopes remain positive, but the curve is less steep, so the slope decreases. This continues until the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-axis, where the slope of the line tangent to the curve is zero. Moving up and to the right some more, the slopes are positive again and continue to increase as the curve becomes more steep.


The derivative of a function does not always exist. If the derived function «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/math» is defined at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mi»a«/mi»«/mrow»«/mstyle»«/math», that is if «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»a«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mfrac»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»a«/mi»«mo»+«/mo»«mi»h«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8722;«/mo»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»a«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mi»h«/mi»«/mfrac»«/math» exists, the original function is said to be differentiable at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mi»a«/mi»«/mrow»«/mstyle»«/math».
Recall from Unit 1, for a limit to exist, the related one-sided limits must exist and they must be equal. For example, for «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mfrac»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»a«/mi»«mo»+«/mo»«mi»h«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8722;«/mo»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»a«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mi»h«/mi»«/mfrac»«/mrow»«/mstyle»«/math» to exist, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«msup»«mn»0«/mn»«mo»§#8722;«/mo»«/msup»«/mrow»«/munder»«mfrac»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»a«/mi»«mo»+«/mo»«mi»h«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8722;«/mo»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»a«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mi»h«/mi»«/mfrac»«mo»=«/mo»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«msup»«mn»0«/mn»«mo»+«/mo»«/msup»«/mrow»«/munder»«mfrac»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»a«/mi»«mo»+«/mo»«mi»h«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8722;«/mo»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»a«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mi»h«/mi»«/mfrac»«/mrow»«/mstyle»«/math».
A function may be differentiable over an interval or it may be differentiable over the entire set of real numbers.