L3 The Power Rule and The Sum and Differences Rules of Derivatives - Part 5
Completion requirements
Unit 2A
Derivatives Part 1
Lesson 3: The Power Rule and The Sum and Differences Rules of Derivatives
The Sum and Difference Rules
The Sum Rule If two functions are differentiable, then the sum of the functions is also differentiable. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfenced open=¨[¨ close=¨]¨»«mrow»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»+«/mo»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mrow»«/mfenced»«mo mathvariant=¨italic¨»`«/mo»«mo»=«/mo»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mfenced»«mi»x«/mi»«/mfenced»«mo»+«/mo»«mi»g«/mi»«mo mathvariant=¨italic¨»`«/mo»«mfenced»«mi»x«/mi»«/mfenced»«/math» Alternative notation: «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mfrac»«mi»d«/mi»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«/mfrac»«mfenced open=¨[¨ close=¨]¨»«mrow»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»+«/mo»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mrow»«/mfenced»«mo»=«/mo»«mfrac»«mi»d«/mi»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«/mfrac»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»+«/mo»«mfrac»«mi»d«/mi»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«/mfrac»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mrow»«/mstyle»«/math» The Difference Rule If two functions are differentiable, then the difference of the functions is also differentiable. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfenced open=¨[¨ close=¨]¨»«mrow»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»-«/mo»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mrow»«/mfenced»«mo mathvariant=¨italic¨»`«/mo»«mo»=«/mo»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mfenced»«mi»x«/mi»«/mfenced»«mo»-«/mo»«mi»g«/mi»«mo mathvariant=¨italic¨»`«/mo»«mfenced»«mi»x«/mi»«/mfenced»«/math» Alternative notation: «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfrac»«mi»d«/mi»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«/mfrac»«mfenced open=¨[¨ close=¨]¨»«mrow»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»-«/mo»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mrow»«/mfenced»«mo»=«/mo»«mfrac»«mi»d«/mi»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«/mfrac»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»-«/mo»«mfrac»«mi»d«/mi»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«/mfrac»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mstyle»«/math» |
Find the derivative of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mn»4«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mstyle»«/math».
In the previous Lesson, the derivative of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mn»4«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mstyle»«/math»
was found using first principles.
Using the sum rule, and applying the power rule, the derivative can also be determined as follows.
The derivative of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mn»4«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mstyle»«/math» is «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mn»4«/mn»«/math».
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mfenced»«mi»x«/mi»«/mfenced»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mfrac»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mo»+«/mo»«mi»h«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8722;«/mo»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mi»h«/mi»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mfrac»«mrow»«mfenced»«mrow»«mn»4«/mn»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mo»+«/mo»«mi»h«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mo»§#8722;«/mo»«mfenced»«mrow»«mn»4«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«/mrow»«mi»h«/mi»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mfrac»«mrow»«mn»4«/mn»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«mi»h«/mi»«mo»+«/mo»«mn»1«/mn»«mo»§#8722;«/mo»«mn»4«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«mi»h«/mi»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mfenced»«mfrac»«mrow»«mn»4«/mn»«mi»h«/mi»«/mrow»«mi»h«/mi»«/mfrac»«/mfenced»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«munder»«mi»lim«/mi»«mrow»«mi»h«/mi»«mo»§#8594;«/mo»«mn»0«/mn»«/mrow»«/munder»«mfenced»«mn»4«/mn»«/mfenced»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»4«/mn»«/mtd»«/mtr»«/mtable»«/math»
Using the sum rule, and applying the power rule, the derivative can also be determined as follows.
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»4«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mtd»«/mtr»«mtr»«mtd»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mi»d«/mi»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«/mfrac»«mi mathvariant=¨normal¨»(«/mi»«mn»4«/mn»«msup»«mi»x«/mi»«mn»1«/mn»«/msup»«mi mathvariant=¨normal¨»)«/mi»«mo»+«/mo»«mfrac»«mi»d«/mi»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«/mfrac»«mi mathvariant=¨normal¨»(«/mi»«mn»1«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»4«/mn»«mo»+«/mo»«mn»0«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»4«/mn»«/mtd»«/mtr»«/mtable»«/math»
The derivative of a constant is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»0«/mn»«/mstyle»«/math». |
Differentiate «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»y«/mi»«mo»=«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mo»-«/mo»«mn»3«/mn»«mi»)(«/mi»«mi»x«/mi»«mo»+«/mo»«mn»5«/mn»«mi mathvariant=¨normal¨»)«/mi»«/math».
Use the distributive law to expand the function.
Apply the sum and difference rules, along with the power rule to find the derivative.
The derivative of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«mi»)(«/mi»«mi»x«/mi»«mo»§#8722;«/mo»«mn»5«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mstyle»«/math» is «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»y«/mi»«mo mathvariant=¨italic¨»`«/mo»«mo»=«/mo»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»2«/mn»«/math».
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»y«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mo»§#8722;«/mo»«mn»3«/mn»«mi»)(«/mi»«mi»x«/mi»«mo»+«/mo»«mn»5«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»2«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»15«/mn»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»
Apply the sum and difference rules, along with the power rule to find the derivative.
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»y«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»2«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»15«/mn»«/mtd»«/mtr»«mtr»«mtd»«mi»y«/mi»«mo mathvariant=¨italic¨»`«/mo»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mi»d«/mi»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«/mfrac»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mfrac»«mi»d«/mi»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«/mfrac»«mn»2«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mfrac»«mi»d«/mi»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«/mfrac»«mn»15«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»2«/mn»«mo»§#8722;«/mo»«mn»0«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»2«/mn»«/mtd»«/mtr»«/mtable»«/math»
The derivative of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«mi»)(«/mi»«mi»x«/mi»«mo»§#8722;«/mo»«mn»5«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mstyle»«/math» is «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»y«/mi»«mo mathvariant=¨italic¨»`«/mo»«mo»=«/mo»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»2«/mn»«/math».