Unit 2A

Derivatives Part 1

Lesson 5: The Chain Rule


Practice

Once you feel confident applying combinations of derivative rules, click on the Practice tab and complete problems 1 and 2. Check your answers by going to the Solutions tab.

Instructions:
Click the Download File button to download a printable PDF of the questions. Answer each of the following practice questions on a separate piece of paper. Step by step solutions are provided under the Solutions tab. You will learn the material more thoroughly if you complete the questions before checking the answers.

1.
Differentiate the following functions. Express each answer in factored form.

a.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«msup»«mfenced»«mrow»«mn»5«/mn»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mn»3«/mn»«/mrow»«/msup»«mi mathvariant=¨normal¨»(«/mi»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mstyle»«/math»

b.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«mfenced»«mrow»«mi»x«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mfenced»«msqrt»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«/msqrt»«/mfenced»«/mrow»«/mstyle»«/math»

c.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mfrac»«mrow»«mn»3«/mn»«mo»§#8722;«/mo»«mi»x«/mi»«/mrow»«msqrt»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«/msqrt»«/mfrac»«/mrow»«/mstyle»«/math»

d.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mfrac»«mrow»«mo»§#8722;«/mo»«mn»5«/mn»«mi»x«/mi»«/mrow»«msqrt»«mn»3«/mn»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/msqrt»«/mfrac»«/mrow»«/mstyle»«/math»

2.
Find the derivative of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«mfrac»«msup»«mfenced»«mrow»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«/mrow»«/mfenced»«mn»2«/mn»«/msup»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfrac»«/mrow»«/mstyle»«/math» using each of the following derivative rules.

a.
the quotient rule

b.
the product rule

1.
Differentiate the following functions. Express each answer in factored form.

a.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«msup»«mfenced»«mrow»«mn»5«/mn»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mn»3«/mn»«/mrow»«/msup»«mi mathvariant=¨normal¨»(«/mi»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mstyle»«/math»

b.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«mfenced»«mrow»«mi»x«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mfenced»«msqrt»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«/msqrt»«/mfenced»«/mrow»«/mstyle»«/math»

c.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mfrac»«mrow»«mn»3«/mn»«mo»§#8722;«/mo»«mi»x«/mi»«/mrow»«msqrt»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«/msqrt»«/mfrac»«/mrow»«/mstyle»«/math»

d.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mfrac»«mrow»«mo»§#8722;«/mo»«mn»5«/mn»«mi»x«/mi»«/mrow»«msqrt»«mn»3«/mn»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/msqrt»«/mfrac»«/mrow»«/mstyle»«/math»

a.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«msup»«mfenced»«mrow»«mn»5«/mn»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mn»3«/mn»«/mrow»«/msup»«mi mathvariant=¨normal¨»(«/mi»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mstyle»«/math»

Let «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«msup»«mfenced»«mrow»«mn»5«/mn»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mn»3«/mn»«/mrow»«/msup»«/mrow»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math».

Set up a chart to help find the derivative using the product rule.

Function
Derivative
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«msup»«mfenced»«mrow»«mn»5«/mn»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mn»3«/mn»«/mrow»«/msup»«/mstyle»«/math»
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»f«/mi»«mo»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«mn»3«/mn»«msup»«mfenced»«mrow»«mn»5«/mn»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mn»4«/mn»«/mrow»«/msup»«mo»§#8729;«/mo»«mn»5«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«mn»15«/mn»«msup»«mfenced»«mrow»«mn»5«/mn»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mn»4«/mn»«/mrow»«/msup»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«/mstyle»«/math»
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»g«/mi»«mo»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mn»3«/mn»«/mstyle»«/math»

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mfrac»«mrow»«mi»d«/mi»«mi»y«/mi»«/mrow»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«/mfrac»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«msup»«mfenced»«mrow»«mn»5«/mn»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mn»3«/mn»«/mrow»«/msup»«mo»§#8729;«/mo»«mn»3«/mn»«mo»+«/mo»«mfenced»«mrow»«mo»§#8722;«/mo»«mn»15«/mn»«/mrow»«/mfenced»«msup»«mfenced»«mrow»«mn»5«/mn»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mn»4«/mn»«/mrow»«/msup»«mfenced»«mrow»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«/mrow»«/mfenced»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»3«/mn»«msup»«mfenced»«mrow»«mn»5«/mn»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mn»4«/mn»«/mrow»«/msup»«mfenced open=¨[¨ close=¨]¨»«mrow»«mi mathvariant=¨normal¨»(«/mi»«mn»5«/mn»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8722;«/mo»«mn»5«/mn»«mi mathvariant=¨normal¨»(«/mi»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mfenced»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»3«/mn»«msup»«mfenced»«mrow»«mn»5«/mn»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mn»4«/mn»«/mrow»«/msup»«mfenced»«mrow»«mn»5«/mn»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«mo»§#8722;«/mo»«mn»15«/mn»«mi»x«/mi»«mo»+«/mo»«mn»10«/mn»«/mrow»«/mfenced»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»3«/mn»«msup»«mfenced»«mrow»«mn»5«/mn»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mn»4«/mn»«/mrow»«/msup»«mfenced»«mrow»«mo»§#8722;«/mo»«mn»10«/mn»«mi»x«/mi»«mo»+«/mo»«mn»14«/mn»«/mrow»«/mfenced»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«mn»2«/mn»«mfenced»«mn»3«/mn»«/mfenced»«msup»«mfenced»«mrow»«mn»5«/mn»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mn»4«/mn»«/mrow»«/msup»«mfenced»«mrow»«mn»5«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»7«/mn»«/mrow»«/mfenced»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«mn»6«/mn»«msup»«mfenced»«mrow»«mn»5«/mn»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mn»4«/mn»«/mrow»«/msup»«mi mathvariant=¨normal¨»(«/mi»«mn»5«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»7«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mo»§#8722;«/mo»«mn»6«/mn»«mi mathvariant=¨normal¨»(«/mi»«mn»5«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»7«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mrow»«mi mathvariant=¨normal¨»(«/mi»«mn»5«/mn»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«msup»«mi mathvariant=¨normal¨»)«/mi»«mn»4«/mn»«/msup»«/mrow»«/mfrac»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

The common factor is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»3«/mn»«msup»«mfenced»«mrow»«mn»5«/mn»«mi»x«/mi»«mo»+«/mo»«mn»4«/mn»«/mrow»«/mfenced»«mrow»«mo»-«/mo»«mn»4«/mn»«/mrow»«/msup»«/mrow»«/mstyle»«/math».


b.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«mfenced»«mrow»«mi»x«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mfenced»«msqrt»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«/msqrt»«/mfenced»«/mrow»«/mstyle»«/math»

Let «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mi»x«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«msqrt»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«/msqrt»«/mrow»«/mstyle»«/math».

Set up a chart to help find the derivative using the product rule.

Function
Derivative
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mi»x«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«/mstyle»«/math»
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»f«/mi»«mo»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mn»1«/mn»«/mstyle»«/math»
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«msqrt»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«/msqrt»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«msup»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«/mrow»«/mfenced»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/msup»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»g«/mi»«mo»`«/mo»«mfenced»«mi»x«/mi»«/mfenced»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«msup»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mrow»«/msup»«mo»§#8729;«/mo»«mn»1«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«msup»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mrow»«/msup»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mfrac»«mrow»«mi»d«/mi»«mi»y«/mi»«/mrow»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«/mfrac»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfenced»«mrow»«mi»x«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mfenced»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mfenced»«msup»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mrow»«/msup»«mo»+«/mo»«mn»1«/mn»«mo»§#8729;«/mo»«msup»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«/mrow»«/mfenced»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/msup»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«msup»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mrow»«/msup»«mfenced open=¨[¨ close=¨]¨»«mrow»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«mi mathvariant=¨normal¨»)«/mi»«mo»+«/mo»«mn»2«/mn»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mfenced»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«msup»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mrow»«/msup»«mfenced»«mrow»«mi»x«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«mo»+«/mo»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»6«/mn»«/mrow»«/mfenced»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«msup»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mrow»«/msup»«mfenced»«mrow»«mn»3«/mn»«mi»x«/mi»«mo»+«/mo»«mn»5«/mn»«/mrow»«/mfenced»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mn»3«/mn»«mi»x«/mi»«mo»+«/mo»«mn»5«/mn»«/mrow»«mrow»«mn»2«/mn»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«msup»«mi mathvariant=¨normal¨»)«/mi»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/msup»«/mrow»«/mfrac»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»
or
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨center center left¨»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mn»3«/mn»«mi»x«/mi»«mo»+«/mo»«mn»5«/mn»«/mrow»«mrow»«mn»2«/mn»«msqrt»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«/msqrt»«/mrow»«/mfrac»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

The common factor is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«msup»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«/mrow»«/mfenced»«mrow»«mo»-«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mrow»«/msup»«/mstyle»«/math».


c.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mfrac»«mrow»«mn»3«/mn»«mo»§#8722;«/mo»«mi»x«/mi»«/mrow»«msqrt»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«/msqrt»«/mfrac»«/mrow»«/mstyle»«/math»

Let «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»h«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mn»3«/mn»«mo»§#8722;«/mo»«mi»x«/mi»«/mrow»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«msqrt»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«/msqrt»«/mrow»«/mstyle»«/math».

Set up a chart to help find the derivative using the quotient rule.

Function Derivative
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»h«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mn»3«/mn»«mo»§#8722;«/mo»«mi»x«/mi»«/mstyle»«/math»
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»h«/mi»«mo»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mo»§#8722;«/mo»«mn»1«/mn»«/mstyle»«/math»
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«msqrt»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«/msqrt»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«msup»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«/mrow»«/mfenced»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/msup»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»g«/mi»«mo»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«msup»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mrow»«/msup»«mo»§#8729;«/mo»«mfenced»«mrow»«mn»2«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«/mrow»«/mfenced»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«msup»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mrow»«/msup»«mo»§#8729;«/mo»«mfenced»«mn»2«/mn»«/mfenced»«mfenced»«mrow»«mi»x«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/mfenced»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«msup»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mrow»«/msup»«mo»§#8729;«/mo»«mfenced»«mrow»«mi»x«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/mfenced»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»f«/mi»«mo»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«msup»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«/mrow»«/mfenced»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/msup»«mo»§#8729;«/mo»«mfenced»«mrow»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mo»§#8722;«/mo»«mfenced»«mrow»«mn»3«/mn»«mo»§#8722;«/mo»«mi»x«/mi»«/mrow»«/mfenced»«msup»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mrow»«/msup»«mo»§#8729;«/mo»«mfenced»«mrow»«mi»x«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/mfenced»«/mrow»«msup»«mfenced open=¨[¨ close=¨]¨»«msup»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«/mrow»«/mfenced»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/msup»«/mfenced»«mn»2«/mn»«/msup»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«msup»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mrow»«/msup»«mfenced open=¨[¨ close=¨]¨»«mrow»«mo»§#8722;«/mo»«mn»1«/mn»«msup»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«/mrow»«/mfenced»«mn»1«/mn»«/msup»«mo»§#8722;«/mo»«mfenced»«mrow»«mn»3«/mn»«mo»§#8722;«/mo»«mi»x«/mi»«/mrow»«/mfenced»«mfenced»«mrow»«mi»x«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/mfenced»«/mrow»«/mfenced»«/mrow»«msup»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«/mrow»«/mfenced»«mn»1«/mn»«/msup»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«msup»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mrow»«/msup»«mfenced open=¨[¨ close=¨]¨»«mrow»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»2«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mfenced»«mrow»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»3«/mn»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mi»x«/mi»«/mrow»«/mfenced»«/mrow»«/mfenced»«/mrow»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«/mrow»«/mfenced»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«msup»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mrow»«/msup»«mfenced open=¨[¨ close=¨]¨»«mrow»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»2«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»3«/mn»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«mo»+«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mi»x«/mi»«/mrow»«/mfenced»«/mrow»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«/mrow»«/mfenced»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«msup»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mrow»«/msup»«mfenced»«mrow»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«/mrow»«/mfenced»«/mrow»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«/mrow»«/mfenced»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mo»§#8722;«/mo»«msup»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mrow»«/msup»«mfenced»«mrow»«mn»2«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»3«/mn»«/mrow»«/mfenced»«/mrow»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«/mrow»«/mfenced»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mo»§#8722;«/mo»«mfenced»«mrow»«mn»2«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»3«/mn»«/mrow»«/mfenced»«/mrow»«msup»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«/mrow»«/mfenced»«mfrac»«mn»3«/mn»«mn»2«/mn»«/mfrac»«/msup»«/mfrac»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

Identify a common factor.


d.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mfrac»«mrow»«mo»§#8722;«/mo»«mn»5«/mn»«mi»x«/mi»«/mrow»«msqrt»«mn»3«/mn»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/msqrt»«/mfrac»«/mrow»«/mstyle»«/math»

Let «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mo»§#8722;«/mo»«mn»5«/mn»«mi»x«/mi»«/mrow»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»h«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«msqrt»«mn»3«/mn»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/msqrt»«/mrow»«/mstyle»«/math».

Set up a chart to help find the derivative using the quotient rule.

Function Derivative
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mo»§#8722;«/mo»«mn»5«/mn»«mi»x«/mi»«/mstyle»«/math»
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»f«/mi»«mo»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mo»§#8722;«/mo»«mn»5«/mn»«/mstyle»«/math»
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»h«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«msqrt»«mn»3«/mn»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/msqrt»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«msup»«mfenced»«mrow»«mn»3«/mn»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfenced»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/msup»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»h«/mi»«mo»`«/mo»«mfenced»«mi»x«/mi»«/mfenced»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«msup»«mfenced»«mrow»«mn»3«/mn»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mrow»«/msup»«mo»§#8729;«/mo»«mfenced»«mrow»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«/mrow»«/mfenced»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«mi»x«/mi»«msup»«mfenced»«mrow»«mn»3«/mn»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mrow»«/msup»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»g«/mi»«mo»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«msup»«mfenced»«mrow»«mn»3«/mn»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfenced»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/msup»«mfenced»«mrow»«mo»§#8722;«/mo»«mn»5«/mn»«/mrow»«/mfenced»«mo»§#8722;«/mo»«mfenced»«mrow»«mo»§#8722;«/mo»«mn»5«/mn»«mi»x«/mi»«/mrow»«/mfenced»«mfenced»«mrow»«mo»§#8722;«/mo»«mi»x«/mi»«/mrow»«/mfenced»«msup»«mfenced»«mrow»«mn»3«/mn»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mrow»«/msup»«/mrow»«msup»«mfenced open=¨[¨ close=¨]¨»«msup»«mfenced»«mrow»«mn»3«/mn»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfenced»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/msup»«/mfenced»«mn»2«/mn»«/msup»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mo»§#8722;«/mo»«mn»5«/mn»«msup»«mfenced»«mrow»«mn»3«/mn»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mrow»«/msup»«mfenced open=¨[¨ close=¨]¨»«mrow»«msup»«mfenced»«mrow»«mn»3«/mn»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfenced»«mn»1«/mn»«/msup»«mo»+«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfenced»«/mrow»«mfenced»«mrow»«mn»3«/mn»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfenced»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mo»§#8722;«/mo»«mn»5«/mn»«msup»«mfenced»«mrow»«mn»3«/mn»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mrow»«/msup»«mfenced open=¨[¨ close=¨]¨»«mn»3«/mn»«/mfenced»«/mrow»«mfenced»«mrow»«mn»3«/mn»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfenced»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mo»§#8722;«/mo»«mn»15«/mn»«msup»«mfenced»«mrow»«mn»3«/mn»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mrow»«/msup»«/mrow»«mfenced»«mrow»«mn»3«/mn»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfenced»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mo»§#8722;«/mo»«mn»15«/mn»«/mrow»«msup»«mfenced»«mrow»«mn»3«/mn»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfenced»«mfrac»«mn»3«/mn»«mn»2«/mn»«/mfrac»«/msup»«/mfrac»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

Identify a common factor.

2.
Find the derivative of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«mfrac»«msup»«mfenced»«mrow»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«/mrow»«/mfenced»«mn»2«/mn»«/msup»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfrac»«/mrow»«/mstyle»«/math» using each of the following derivative rules.

a.
the quotient rule

b.
the product rule

a.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«mfrac»«msup»«mfenced»«mrow»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«/mrow»«/mfenced»«mn»2«/mn»«/msup»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfrac»«/mrow»«/mstyle»«/math»

Let «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mi mathvariant=¨normal¨»(«/mi»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«msup»«mi mathvariant=¨normal¨»)«/mi»«mn»2«/mn»«/msup»«/mrow»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mstyle»«/math».

Set up a chart to help find the derivative using the quotient rule.

Function Derivative
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mi mathvariant=¨normal¨»(«/mi»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«msup»«mi mathvariant=¨normal¨»)«/mi»«mn»2«/mn»«/msup»«/mstyle»«/math»
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»f«/mi»«mo»`«/mo»«mfenced»«mi»x«/mi»«/mfenced»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»2«/mn»«mfenced»«mrow»«mn»3«/mn»«mi»x«/mi»«mo»-«/mo»«mn»2«/mn»«/mrow»«/mfenced»«mo»§#8729;«/mo»«mn»3«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»6«/mn»«mfenced»«mrow»«mn»3«/mn»«mi»x«/mi»«mo»-«/mo»«mn»2«/mn»«/mrow»«/mfenced»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«/mstyle»«/math»
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»g«/mi»«mo»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mn»2«/mn»«mi»x«/mi»«/mstyle»«/math»

Skills needed to complete this questions are:
  • factoring
  • exponent rules
  • algebra

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mfrac»«mrow»«mi»d«/mi»«mi»y«/mi»«/mrow»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«/mfrac»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mi mathvariant=¨normal¨»(«/mi»«mn»6«/mn»«mi»)(«/mi»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«mi mathvariant=¨normal¨»(«/mi»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«msup»«mi mathvariant=¨normal¨»)«/mi»«mn»2«/mn»«/msup»«/mrow»«mrow»«mi mathvariant=¨normal¨»(«/mi»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«msup»«mi mathvariant=¨normal¨»)«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mn»2«/mn»«mi mathvariant=¨normal¨»(«/mi»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«mi mathvariant=¨normal¨»)«/mi»«mfenced open=¨[¨ close=¨]¨»«mrow»«mn»3«/mn»«mi mathvariant=¨normal¨»(«/mi»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8722;«/mo»«mi»x«/mi»«mi mathvariant=¨normal¨»(«/mi»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mfenced»«/mrow»«mrow»«mi mathvariant=¨normal¨»(«/mi»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«msup»«mi mathvariant=¨normal¨»)«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mn»2«/mn»«mi mathvariant=¨normal¨»(«/mi»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«mi mathvariant=¨normal¨»)«/mi»«mfenced open=¨[¨ close=¨]¨»«mrow»«mn»3«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»3«/mn»«mo»§#8722;«/mo»«mn»3«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»2«/mn»«mi»x«/mi»«/mrow»«/mfenced»«/mrow»«mrow»«mi mathvariant=¨normal¨»(«/mi»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«msup»«mi mathvariant=¨normal¨»)«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mn»2«/mn»«mi mathvariant=¨normal¨»(«/mi»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«mi mathvariant=¨normal¨»)«/mi»«mfenced»«mrow»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«/mrow»«/mfenced»«/mrow»«mrow»«mi mathvariant=¨normal¨»(«/mi»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«msup»«mi mathvariant=¨normal¨»)«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfrac»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

Identify a common factor.


b.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»y«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«msup»«mfenced»«mrow»«mn»3«/mn»«mi»x«/mi»«mo»-«/mo»«mn»2«/mn»«/mrow»«/mfenced»«mn»2«/mn»«/msup»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«msup»«mfenced»«mrow»«mn»3«/mn»«mi»x«/mi»«mo»-«/mo»«mn»2«/mn»«/mrow»«/mfenced»«mn»2«/mn»«/msup»«msup»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mrow»«mo»-«/mo»«mn»1«/mn»«/mrow»«/msup»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

Let «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mi mathvariant=¨normal¨»(«/mi»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«msup»«mi mathvariant=¨normal¨»)«/mi»«mn»2«/mn»«/msup»«/mrow»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«msup»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/msup»«/mrow»«/mstyle»«/math».

Set up a chart to help find the derivative using the product rule.

Function
Derivative
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mi mathvariant=¨normal¨»(«/mi»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«msup»«mi mathvariant=¨normal¨»)«/mi»«mn»2«/mn»«/msup»«/mstyle»«/math»
  «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨left center left¨»«mtr»«mtd»«mi»f«/mi»«mo»`«/mo»«mfenced»«mi»x«/mi»«/mfenced»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»2«/mn»«mfenced»«mrow»«mn»3«/mn»«mi»x«/mi»«mo»-«/mo»«mn»2«/mn»«/mrow»«/mfenced»«mo»§#8729;«/mo»«mn»3«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»6«/mn»«mfenced»«mrow»«mn»3«/mn»«mi»x«/mi»«mo»-«/mo»«mn»2«/mn»«/mrow»«/mfenced»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«msup»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/msup»«/mstyle»«/math»
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨left center left¨»«mtr»«mtd»«mi»g«/mi»«mo»`«/mo»«mfenced»«mi»x«/mi»«/mfenced»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«mn»1«/mn»«msup»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mn»2«/mn»«/mrow»«/msup»«mo»§#8729;«/mo»«mn»2«/mn»«mi»x«/mi»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«msup»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mn»2«/mn»«/mrow»«/msup»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mfrac»«mrow»«mi»d«/mi»«mi»y«/mi»«/mrow»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«/mfrac»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mi mathvariant=¨normal¨»(«/mi»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«msup»«mi mathvariant=¨normal¨»)«/mi»«mn»2«/mn»«/msup»«mfenced»«mrow»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«/mrow»«/mfenced»«msup»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mn»2«/mn»«/mrow»«/msup»«mo»+«/mo»«mn»6«/mn»«mi mathvariant=¨normal¨»(«/mi»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«mi mathvariant=¨normal¨»)«/mi»«msup»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/msup»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«mn»2«/mn»«mi mathvariant=¨normal¨»(«/mi»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«mi mathvariant=¨normal¨»)«/mi»«msup»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mn»2«/mn»«/mrow»«/msup»«mfenced open=¨[¨ close=¨]¨»«mrow»«mi»x«/mi»«mi mathvariant=¨normal¨»(«/mi»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8722;«/mo»«mn»3«/mn»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«/mrow»«/mfenced»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«mn»2«/mn»«mi mathvariant=¨normal¨»(«/mi»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«mi mathvariant=¨normal¨»)«/mi»«msup»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mn»2«/mn»«/mrow»«/msup»«mfenced»«mrow»«mn»3«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»3«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»3«/mn»«/mrow»«/mfenced»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«mn»2«/mn»«mi mathvariant=¨normal¨»(«/mi»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«mi mathvariant=¨normal¨»)«/mi»«msup»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mn»2«/mn»«/mrow»«/msup»«mi mathvariant=¨normal¨»(«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»3«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»2«/mn»«mi mathvariant=¨normal¨»(«/mi»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«mi mathvariant=¨normal¨»)«/mi»«msup»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mrow»«mo»§#8722;«/mo»«mn»2«/mn»«/mrow»«/msup»«mi mathvariant=¨normal¨»(«/mi»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mn»2«/mn»«mfenced»«mrow»«mn»3«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«/mrow»«/mfenced»«mi mathvariant=¨normal¨»(«/mi»«mn»2«/mn»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mrow»«mi mathvariant=¨normal¨»(«/mi»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«msup»«mi mathvariant=¨normal¨»)«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfrac»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

Identify a common factor.