Unit 2B

Derivatives Part 2

Lesson 1: Higher Order Derivatives


How do the graphs of a polynomial function and its derivative function compare?

Function Graph
The function «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«msup»«mi»x«/mi»«mn»4«/mn»«/msup»«mo»§#8722;«/mo»«mn»3«/mn»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»+«/mo»«mn»3«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mstyle»«/math» is shown. This is a function of degree «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»4«/mn»«/mstyle»«/math».


The derivative of the function «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«msup»«mi»x«/mi»«mn»4«/mn»«/msup»«mo»§#8722;«/mo»«mn»3«/mn»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»+«/mo»«mn»3«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mstyle»«/math» is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»g«/mi»«mo»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mn»4«/mn»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»§#8722;«/mo»«mn»9«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»3«/mn»«mo»,«/mo»«/mstyle»«/math» which is shown to the right. The derivative is a function of degree «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«/mstyle»«/math».  


The derivative of the function «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»g«/mi»«mo»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mn»4«/mn»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»§#8722;«/mo»«mn»9«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»3«/mn»«/mstyle»«/math» is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»g«/mi»«mo»``«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mn»12«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»18«/mn»«mi»x«/mi»«mo»,«/mo»«/mstyle»«/math» which is shown to the right. This is a function of degree «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math».
The derivative of the function «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»g«/mi»«mo»``«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mn»12«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»18«/mn»«mi»x«/mi»«/mstyle»«/math» is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»g«/mi»«mo»```«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mn»24«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»18«/mn»«mo»,«/mo»«/mstyle»«/math» which is shown to the right. This is a function of degree «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»1«/mn»«/mstyle»«/math».
The derivative of the function «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»g«/mi»«mo»```«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mn»24«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»18«/mn»«/mstyle»«/math» is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«msup»«mi»g«/mi»«mn»4«/mn»«/msup»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mn»24«/mn»«mo»,«/mo»«/mstyle»«/math» which is shown to the right. This is a function of degree «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»0«/mn»«/mstyle»«/math».




Notice each time the derivative of a polynomial function is determined, the degree of the derivative function is one less than the original polynomial function.

Skill Builder


For more information about polynomial functions, click the Skill Builder button to access the Skill Builder page.