L2 Increasing and Decreasing Functions - Part 2
Completion requirements
Unit 3
Curve Sketching
Lesson 2: Increasing and Decreasing Functions
The terms increasing function and decreasing function refer to what happens to the function value «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math» as «math style=¨font-family:Verdana¨
xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» increases. The function is said to increase if «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»
gets larger as «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» gets larger, and the function is said to decrease if «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle
mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math» gets smaller as «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» gets larger. Often, the term rising is used to describe
the graph of an increasing function and the term falling is used to describe the graph of a decreasing function.
Recall the derivative represents the slope of the curve.
At a specific point on the curve,
Recall the derivative represents the slope of the curve.
At a specific point on the curve,
- if the slope is positive, the function is increasing at that point,
- if the slope is negative, the function is decreasing at that point, and
- if the slope is zero or undefined, a critical point occurs at that point.
Sketch the graph of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»+«/mo»«mn»12«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/mstyle»«/math».
Find the derivative of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»+«/mo»«mn»12«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/mstyle»«/math».
Set the derivative equal to zero.
Solve for «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math».
Recall a critical point occurs at a point where the slope of the curve (the derivative) is zero. The «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-coordinates of the critical points are «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mo»§#177;«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math». To find the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-coordinates, substitute «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mo»§#177;«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math» into the original function.
The slope of the curve and its tangent line is zero at critical points «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi mathvariant=¨normal¨»(«/mi»«mn»2«/mn»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mn»15«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi mathvariant=¨normal¨»(«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mo»§#8722;«/mo»«mn»17«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mstyle»«/math». That is, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mn»0«/mn»«/mrow»«/mstyle»«/math».
Using the critical points as interval boundaries, identify and test the various regions of the graph to determine where the function increases and where it decreases.
As shown on the graph below, there are three regions to test for the function «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»+«/mo»«mn»12«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/mstyle»«/math». One region is to the left of the leftmost critical point «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfenced»«mrow»«mi»x«/mi»«mo»§#60;«/mo»«mo»§#8722;«/mo»«mn»2«/mn»«/mrow»«/mfenced»«/mstyle»«/math», one region is to the right of the rightmost critical point «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfenced»«mrow»«mi»x«/mi»«mo»§#62;«/mo»«mn»2«/mn»«/mrow»«/mfenced»«/mstyle»«/math», and one is in between the two critical points «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi mathvariant=¨normal¨»(«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«mo»§#60;«/mo»«mi»x«/mi»«mo»§#60;«/mo»«mn»2«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mstyle»«/math».
To determine the behavior of the function in each region, choose an «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-value from each region and substitute into the derivative function to identify the sign of the derivative in each region.
For the region «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»§#60;«/mo»«mo»§#8722;«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math», substitute «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mo»§#8722;«/mo»«mn»3«/mn»«/mrow»«/mstyle»«/math» (or any other «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-value in the region) into the derivative function to see if the derivative is positive or negative.
Since the derivative is negative, the function is decreasing on the interval «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»§#60;«/mo»«mo»§#8722;«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math».
For the region «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mo»§#8722;«/mo»«mn»2«/mn»«mo»§#60;«/mo»«mi»x«/mi»«mo»§#60;«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math», substitute «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mn»0«/mn»«/mrow»«/mstyle»«/math» into the derivative function to see if the derivative is positive or negative.
Since the derivative is positive, the function is increasing on the interval «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mo»§#8722;«/mo»«mn»2«/mn»«mo»§#60;«/mo»«mi»x«/mi»«mo»§#60;«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math».
For the region «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»§#62;«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math», substitute «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mn»3«/mn»«/mrow»«/mstyle»«/math» into the derivative function to see if the derivative is positive or negative.
Since the derivative is negative, the function is decreasing on the interval «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»§#62;«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math».
Summarizing this information in a chart will make graphing the function a little easier.
Before sketching the graph using the information in the table above, consider what other information might prove helpful and relatively easy to obtain.
Knowing some additional points, such as «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»- and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-intercepts, will greatly assist in sketching the graph of a function.
Find the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-intercepts by substituting zero for «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math» in the original function.
This function is not easily factored, making the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-intercepts difficult to obtain. At this point, a great deal of algebra is required to find the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-intercepts. Because this Example only requires a sketch, an estimation of where the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-intercepts are located is sufficient. And, the locations of these «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-intercepts will become apparent as known information is added to the graph.
Find the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-intercept by substituting zero for «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» in the original function.
The «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-intercept is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi mathvariant=¨normal¨»(«/mi»«mn»0«/mn»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mo»§#8722;«/mo»«mn»1«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mstyle»«/math».
Incorporating all of the information summarized in the table above, along with the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-intercept, gives the graph of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»+«/mo»«mn»12«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/mstyle»«/math», shown below.
Note that by connecting the three known points (two critical points and the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-intercept) with a smooth curve that follows the increasing, decreasing, and horizontal behaviour from the table, the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-intercepts roughly locate themselves.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mo»§#8722;«/mo»«mn»3«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»12«/mn»«/mrow»«/mstyle»«/math»
Set the derivative equal to zero.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mo»§#8722;«/mo»«mn»3«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»12«/mn»«mo»=«/mo»«mn»0«/mn»«/mrow»«/mstyle»«/math»
Solve for «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math».
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mo»§#8722;«/mo»«mn»3«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»12«/mn»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»0«/mn»«/mtd»«/mtr»«mtr»«mtd»«mo»§#8722;«/mo»«mn»3«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»-«/mo»«mn»12«/mn»«/mtd»«/mtr»«mtr»«mtd»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»4«/mn»«/mtd»«/mtr»«mtr»«mtd»«mi»x«/mi»«/mtd»«mtd»«mo»§#177;«/mo»«/mtd»«mtd»«mn»2«/mn»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»
Recall a critical point occurs at a point where the slope of the curve (the derivative) is zero. The «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-coordinates of the critical points are «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mo»§#177;«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math». To find the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-coordinates, substitute «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mo»§#177;«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math» into the original function.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left center center center right center left¨»«mtr»«mtd»«mi»For«/mi»«mo»§#160;«/mo»«mi»x«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»2«/mn»«mo»:«/mo»«/mtd»«mtd/»«mtd/»«mtd/»«mtd»«mi»For«/mi»«mo»§#160;«/mo»«mi»x«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»-«/mo»«mn»2«/mn»«mo»:«/mo»«/mtd»«/mtr»«mtr»«mtd/»«mtd/»«mtd/»«mtd/»«mtd/»«mtd/»«mtd/»«mtd/»«mtd/»«/mtr»«mtr»«mtd»«mi»f«/mi»«mi
mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»+«/mo»«mn»12«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«/mtd»«mtd/»«mtd/»«mtd/»«mtd»«mi»f«/mi»«mi
mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»+«/mo»«mn»12«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«/mtd»«/mtr»«mtr»«mtd»«mi»f«/mi»«mi
mathvariant=¨normal¨»(«/mi»«mn»2«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«mi mathvariant=¨normal¨»(«/mi»«mn»2«/mn»«msup»«mi mathvariant=¨normal¨»)«/mi»«mn»3«/mn»«/msup»«mo»+«/mo»«mn»12«/mn»«mi
mathvariant=¨normal¨»(«/mi»«mn»2«/mn»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«/mtd»«mtd/»«mtd/»«mtd/»«mtd»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«mi
mathvariant=¨normal¨»(«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«msup»«mi mathvariant=¨normal¨»)«/mi»«mn»3«/mn»«/msup»«mo»+«/mo»«mn»12«/mn»«mi mathvariant=¨normal¨»(«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«mn»8«/mn»«mo»+«/mo»«mn»24«/mn»«mo»§#8722;«/mo»«mn»1«/mn»«/mtd»«mtd/»«mtd/»«mtd/»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»8«/mn»«mo»§#8722;«/mo»«mn»24«/mn»«mo»§#8722;«/mo»«mn»1«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»15«/mn»«/mtd»«mtd/»«mtd/»«mtd/»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»-«/mo»«mn»17«/mn»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»
The slope of the curve and its tangent line is zero at critical points «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi mathvariant=¨normal¨»(«/mi»«mn»2«/mn»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mn»15«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi mathvariant=¨normal¨»(«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mo»§#8722;«/mo»«mn»17«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mstyle»«/math». That is, «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mn»0«/mn»«/mrow»«/mstyle»«/math».
Where the slope of a curve is zero, its tangent line is horizontal.
![]() Recall your observations from the Applet: Where is the Derivative Positive? What happens to the slope of a curve on either side of a critical point? |
As shown on the graph below, there are three regions to test for the function «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»+«/mo»«mn»12«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/mstyle»«/math». One region is to the left of the leftmost critical point «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfenced»«mrow»«mi»x«/mi»«mo»§#60;«/mo»«mo»§#8722;«/mo»«mn»2«/mn»«/mrow»«/mfenced»«/mstyle»«/math», one region is to the right of the rightmost critical point «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfenced»«mrow»«mi»x«/mi»«mo»§#62;«/mo»«mn»2«/mn»«/mrow»«/mfenced»«/mstyle»«/math», and one is in between the two critical points «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi mathvariant=¨normal¨»(«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«mo»§#60;«/mo»«mi»x«/mi»«mo»§#60;«/mo»«mn»2«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mstyle»«/math».

To determine the behavior of the function in each region, choose an «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-value from each region and substitute into the derivative function to identify the sign of the derivative in each region.
For the region «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»§#60;«/mo»«mo»§#8722;«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math», substitute «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mo»§#8722;«/mo»«mn»3«/mn»«/mrow»«/mstyle»«/math» (or any other «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-value in the region) into the derivative function to see if the derivative is positive or negative.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi
mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«mn»3«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»12«/mn»«/mtd»«/mtr»«mtr»«mtd»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mo»§#8722;«/mo»«mn»3«/mn»«mi
mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«mn»3«/mn»«msup»«mfenced»«mrow»«mo»§#8722;«/mo»«mn»3«/mn»«/mrow»«/mfenced»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»12«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«mn»27«/mn»«mo»+«/mo»«mn»12«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»-«/mo»«mn»15«/mn»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»
Since the derivative is negative, the function is decreasing on the interval «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»§#60;«/mo»«mo»§#8722;«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math».
For the region «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mo»§#8722;«/mo»«mn»2«/mn»«mo»§#60;«/mo»«mi»x«/mi»«mo»§#60;«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math», substitute «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mn»0«/mn»«/mrow»«/mstyle»«/math» into the derivative function to see if the derivative is positive or negative.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi
mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«mn»3«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»12«/mn»«/mtd»«/mtr»«mtr»«mtd»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mo»(«/mo»«mn»0«/mn»«mo»)«/mo»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«mn»3«/mn»«msup»«mfenced»«mn»0«/mn»«/mfenced»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»12«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»0«/mn»«mo»+«/mo»«mn»12«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»12«/mn»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»
Since the derivative is positive, the function is increasing on the interval «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mo»§#8722;«/mo»«mn»2«/mn»«mo»§#60;«/mo»«mi»x«/mi»«mo»§#60;«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math».
For the region «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»§#62;«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math», substitute «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mn»3«/mn»«/mrow»«/mstyle»«/math» into the derivative function to see if the derivative is positive or negative.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi
mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«mn»3«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»12«/mn»«/mtd»«/mtr»«mtr»«mtd»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mn»3«/mn»«mi
mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«mn»3«/mn»«msup»«mfenced»«mn»3«/mn»«/mfenced»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»12«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«mn»27«/mn»«mo»+«/mo»«mn»12«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«mn»15«/mn»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»
Since the derivative is negative, the function is decreasing on the interval «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»§#62;«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math».
Summarizing this information in a chart will make graphing the function a little easier.
Critical Points
|
![]() |
||
Intervals | «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»§#60;«/mo»«mo»§#8722;«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math» | «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mo»§#8722;«/mo»«mn»2«/mn»«mo»§#60;«/mo»«mi»x«/mi»«mo»§#60;«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math» | «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»§#62;«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math» |
Sign of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mo»`«/mo»«mfenced»«mi»x«/mi»«/mfenced»«/mrow»«/mstyle»«/math»
|
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»-«/mo»«/mstyle»«/math» | «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»+«/mo»«/mstyle»«/math» | «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»-«/mo»«/mstyle»«/math» |
Behaviour of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mstyle»«/math»
|
decreasing | increasing | decreasing |
Before sketching the graph using the information in the table above, consider what other information might prove helpful and relatively easy to obtain.
Knowing some additional points, such as «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»- and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-intercepts, will greatly assist in sketching the graph of a function.
Find the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-intercepts by substituting zero for «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math» in the original function.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»+«/mo»«mn»12«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«/mtd»«/mtr»«mtr»«mtd»«mn»0«/mn»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»+«/mo»«mn»12«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»
This function is not easily factored, making the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-intercepts difficult to obtain. At this point, a great deal of algebra is required to find the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-intercepts. Because this Example only requires a sketch, an estimation of where the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-intercepts are located is sufficient. And, the locations of these «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-intercepts will become apparent as known information is added to the graph.
Find the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-intercept by substituting zero for «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» in the original function.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»+«/mo»«mn»12«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«/mtd»«/mtr»«mtr»«mtd»«mi»f«/mi»«mi
mathvariant=¨normal¨»(«/mi»«mn»0«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«msup»«mfenced»«mn»0«/mn»«/mfenced»«mn»3«/mn»«/msup»«mo»+«/mo»«mn»12«/mn»«mfenced»«mn»0«/mn»«/mfenced»«mo»§#8722;«/mo»«mn»1«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»-«/mo»«mn»1«/mn»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»
The «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-intercept is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi mathvariant=¨normal¨»(«/mi»«mn»0«/mn»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mo»§#8722;«/mo»«mn»1«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mstyle»«/math».
Incorporating all of the information summarized in the table above, along with the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-intercept, gives the graph of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»+«/mo»«mn»12«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/mstyle»«/math», shown below.

Note that by connecting the three known points (two critical points and the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-intercept) with a smooth curve that follows the increasing, decreasing, and horizontal behaviour from the table, the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-intercepts roughly locate themselves.
Watch the following video, Critical Points and Intervals of Increase and Decrease, to see additional examples of how to sketch a curve using intervals of increase and decrease.