L3 Maximum and Minimum Values - Part 2
Completion requirements
Unit 3
Curve Sketching
Lesson 3: Maximum and Minimum Values
Being able to determine a function’s extreme values (maximum and minimum values) is an essential skill in calculus. Before working through some examples, some terminology needs to be introduced.

Points «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»A«/mi»«/mstyle»«/math», «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»B«/mi»«/mstyle»«/math», «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»C«/mi»«/mstyle»«/math», and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»D«/mi»«/mstyle»«/math» are all extrema: maximum and minimum points at which the function assumes maximum or minimum values. The function value (value of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math») is a minimum at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»A«/mi»«/mstyle»«/math» and at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»C«/mi»«/mstyle»«/math», and a maximum at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»B«/mi»«/mstyle»«/math» and at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»D«/mi»«/mstyle»«/math».
There is only one absolute maximum shown on the graph above. The absolute maximum value of the function shown is at point «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»D«/mi»«/mstyle»«/math» because it is the highest point reached by the graph of the function. There is also only one absolute minimum shown on the graph. And, once again, there is only ever one absolute minimum value for any function. The absolute minimum value of the function shown is at point «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»A«/mi»«/mstyle»«/math» because it is the lowest point reached by the graph of the function. To find these absolute extrema, in addition to considering critical points, it will also be necessary to check function values at the endpoints of the interval for which the function is defined.
Point «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»C«/mi»«/mstyle»«/math» is known as a local (relative) minimum. This means the function value at this point on the graph is the smallest in its immediate vicinity, but might not be the smallest on the entire graph. Similarly, point «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»B«/mi»«/mstyle»«/math» is known as a local (relative) maximum. It has a function value that is the largest in its immediate vicinity, but there may be larger function values elsewhere. Local extrema do not occur at the endpoints of the interval for which a function is defined.
Although points «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»A«/mi»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»D«/mi»«/mstyle»«/math» are absolute extrema, only point «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»A«/mi»«/math»is a local extrema as it is not an endpoint.
Absolute Maximum: «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»D«/mi»«/mstyle»«/math»
Absolute Minimum: «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»A«/mi»«/mstyle»«/math»
Local Maximum: «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»B«/mi»«/mstyle»«/math»
Local Minimum: «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»A«/mi»«/mstyle»«/math», «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»C«/mi»«/mstyle»«/math»
A function «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mstyle»«/math» has a local (relative) maximum at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mi»a«/mi»«/mrow»«/mstyle»«/math», if «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»a«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8805;«/mo»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»a«/mi»«mo»§#177;«/mo»«mi»h«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mstyle»«/math» for all values of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»h«/mi»«/mstyle»«/math» sufficiently close to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»0«/mn»«/mstyle»«/math».

Points «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»A«/mi»«/mstyle»«/math», «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»B«/mi»«/mstyle»«/math», «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»C«/mi»«/mstyle»«/math», and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»D«/mi»«/mstyle»«/math» are all extrema: maximum and minimum points at which the function assumes maximum or minimum values. The function value (value of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math») is a minimum at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»A«/mi»«/mstyle»«/math» and at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»C«/mi»«/mstyle»«/math», and a maximum at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»B«/mi»«/mstyle»«/math» and at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»D«/mi»«/mstyle»«/math».
There is only one absolute maximum shown on the graph above. The absolute maximum value of the function shown is at point «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»D«/mi»«/mstyle»«/math» because it is the highest point reached by the graph of the function. There is also only one absolute minimum shown on the graph. And, once again, there is only ever one absolute minimum value for any function. The absolute minimum value of the function shown is at point «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»A«/mi»«/mstyle»«/math» because it is the lowest point reached by the graph of the function. To find these absolute extrema, in addition to considering critical points, it will also be necessary to check function values at the endpoints of the interval for which the function is defined.
Point «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»C«/mi»«/mstyle»«/math» is known as a local (relative) minimum. This means the function value at this point on the graph is the smallest in its immediate vicinity, but might not be the smallest on the entire graph. Similarly, point «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»B«/mi»«/mstyle»«/math» is known as a local (relative) maximum. It has a function value that is the largest in its immediate vicinity, but there may be larger function values elsewhere. Local extrema do not occur at the endpoints of the interval for which a function is defined.
Although points «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»A«/mi»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»D«/mi»«/mstyle»«/math» are absolute extrema, only point «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»A«/mi»«/math»is a local extrema as it is not an endpoint.
Absolute Maximum: «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»D«/mi»«/mstyle»«/math»
Absolute Minimum: «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»A«/mi»«/mstyle»«/math»
Local Maximum: «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»B«/mi»«/mstyle»«/math»
Local Minimum: «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»A«/mi»«/mstyle»«/math», «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»C«/mi»«/mstyle»«/math»
A function «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mstyle»«/math» has a local (relative) maximum at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mi»a«/mi»«/mrow»«/mstyle»«/math», if «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»a«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8805;«/mo»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»a«/mi»«mo»§#177;«/mo»«mi»h«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mstyle»«/math» for all values of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»h«/mi»«/mstyle»«/math» sufficiently close to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»0«/mn»«/mstyle»«/math».

A function «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mstyle»«/math» has a local (relative) minimum at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mi»a«/mi»«/mrow»«/mstyle»«/math», if «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»a«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8804;«/mo»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»a«/mi»«mo»§#177;«/mo»«mi»h«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mstyle»«/math» for all values of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»h«/mi»«/mstyle»«/math» sufficiently close to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»0«/mn»«/mstyle»«/math».
