Unit 4A

Trigonometry Part 1

Lesson 1: Trigonometry Review


Primary and Reciprocal Trigonometric Ratios

Recall, from previous math courses, the three primary trigonometric ratios are sine, cosine, and tangent.

Given the acute angle «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»§#952;«/mo»«/mstyle»«/math», the three primary trigonometric ratios for the right triangle «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»A«/mi»«mi»B«/mi»«mi»C«/mi»«/mrow»«/mstyle»«/math» are as follows.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»sin«/mi»«mo»§#952;«/mo»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mi»opposite«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»opp«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mrow»«mi»hypotenuse«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»hyp«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mi»a«/mi»«mi»c«/mi»«/mfrac»«/mtd»«/mtr»«mtr»«mtd»«mi»cos«/mi»«mo»§#952;«/mo»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mi»adjacent«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»adj«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mrow»«mi»hypotenuse«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»hyp«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mi»b«/mi»«mi»c«/mi»«/mfrac»«/mtd»«/mtr»«mtr»«mtd»«mi»tan«/mi»«mo»§#952;«/mo»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mi»opposite«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»opp«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mrow»«mi»adjacent«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»adj«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mi»a«/mi»«mi»b«/mi»«/mfrac»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»



Use the acronym SOH-CAH-TOA to help remember the ratios.

Sine is Opposite over Hypotenuse
Cosine is Adjacent over Hypotenuse
Tangent is Opposite over Adjacent

Given the acute angle «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»§#952;«/mo»«/mstyle»«/math», the three reciprocal trigonometric ratios for the right triangle «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»A«/mi»«mi»B«/mi»«mi»C«/mi»«/mrow»«/mstyle»«/math» are as follows.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»csc«/mi»«mo»§#952;«/mo»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mn»1«/mn»«mrow»«mi»sin«/mi»«mo»§#952;«/mo»«/mrow»«/mfrac»«mo»=«/mo»«mfrac»«mrow»«mi»hypotenuse«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»hyp«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mrow»«mi»opposite«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»opp«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mi»c«/mi»«mi»a«/mi»«/mfrac»«/mtd»«/mtr»«mtr»«mtd»«mi»sec«/mi»«mo»§#952;«/mo»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mn»1«/mn»«mrow»«mi»cos«/mi»«mo»§#952;«/mo»«/mrow»«/mfrac»«mo»=«/mo»«mfrac»«mrow»«mi»hypotenuse«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»hyp«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mrow»«mi»adjacent«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»adj«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mi»c«/mi»«mi»b«/mi»«/mfrac»«/mtd»«/mtr»«mtr»«mtd»«mi»cot«/mi»«mo»§#952;«/mo»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mn»1«/mn»«mrow»«mi»tan«/mi»«mo»§#952;«/mo»«/mrow»«/mfrac»«mo»=«/mo»«mfrac»«mrow»«mi»adjacent«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»adj«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mrow»«mi»opposite«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»opp«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mi»b«/mi»«mi»a«/mi»«/mfrac»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

Determine the primary trigonometric ratios for the right triangle shown.




«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable»«mtr»«mtd»«mi»sin«/mi»«mo»§#952;«/mo»«mo»=«/mo»«mfrac»«mn»5«/mn»«mn»13«/mn»«/mfrac»«/mtd»«mtd/»«mtd/»«mtd»«mi»cos«/mi»«mo»§#952;«/mo»«mo»=«/mo»«mfrac»«mn»12«/mn»«mn»13«/mn»«/mfrac»«/mtd»«mtd/»«mtd/»«mtd»«mi»tan«/mi»«mo»§#952;«/mo»«mo»=«/mo»«mfrac»«mn»5«/mn»«mn»12«/mn»«/mfrac»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

Notice the answers are left as fractions rather than decimals. When answers are left in fraction form, and not decimal form, the solution is referred to as an exact value.
Determine the reciprocal trigonometric ratios, as exact values, for the right triangle shown.




«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable»«mtr»«mtd»«mi»csc«/mi»«mo»§#952;«/mo»«mo»=«/mo»«mfrac»«mn»13«/mn»«mn»5«/mn»«/mfrac»«/mtd»«mtd/»«mtd/»«mtd»«mi»sec«/mi»«mo»§#952;«/mo»«mo»=«/mo»«mfrac»«mn»13«/mn»«mn»12«/mn»«/mfrac»«/mtd»«mtd/»«mtd/»«mtd»«mi»cot«/mi»«mo»§#952;«/mo»«mo»=«/mo»«mfrac»«mn»12«/mn»«mn»5«/mn»«/mfrac»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»