L2 Trigonometric Identities - Part 7
Completion requirements
Unit 4A
Trigonometry Part 1
Lesson 2: Trigonometric Identities
Proving an Identity
A proof is a logical argument that unequivocally shows the truth of a statement. Proofs can take many forms, but for this Lesson, showing the two sides of an equation are equivalent is sufficient for proving an equation is an identity. This can be done by manipulating the equation, one side at a time, until the two sides are the same.Prove the equation «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mfrac»«mrow»«mi»cos«/mi»«mi»x«/mi»«/mrow»«mrow»«mi»cot«/mi»«mi»x«/mi»«/mrow»«/mfrac»«mo»=«/mo»«mi»sin«/mi»«mi»x«/mi»«/mrow»«/mstyle»«/math»
is an identity for all permissible values of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math».
The left side equals the right side, so the identity has been proven.
|
|
The left side equals the right side, so the identity has been proven.