Unit 4A

Trigonometry Part 1

Lesson 2: Trigonometric Identities


Proofs differ from a lot of other types of math that have been previously studied because there is not a set of rules that can be followed to guarantee a solution. Here are some suggestions to help prove an identity.

Step 1:
Replace «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»tan«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mi»csc«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mi»sec«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»,«/mi»«/mrow»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»cot«/mi»«mi»x«/mi»«/mrow»«/mstyle»«/math» with equivalent expressions that contain «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»sin«/mi»«mi»x«/mi»«/mrow»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»cos«/mi»«mi»x«/mi»«/mrow»«/mstyle»«/math».

Step 2:
If a second degree trigonometric ratio is used «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi mathvariant=¨normal¨»(«/mi»«msup»«mi»sin«/mi»«mn»2«/mn»«/msup»«mi»x«/mi»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«msup»«mi»sec«/mi»«mn»2«/mn»«/msup»«mi»x«/mi»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mi»etc«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mstyle»«/math», try one of the Pythagorean identities.

Step 3:
Manipulate algebraic expressions algebraically. Factoring, creating common denominators, and multiplying by an expression equivalent to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»1«/mn»«/mstyle»«/math» are some of the most common strategies.

Step 4:
Be inventive. There is more than one correct way to show two expressions are equivalent. If one strategy fails, try another. With practice, you will begin to see what can be done to simplify an expression!

Watch the video Proving Identities for an additional example on proving an equation is an identity using two different strategies.

Proofs often require several attempts, different approaches, and even a bit of luck! Pick a starting point that makes sense and begin manipulating both sides of a given equation. If something does not work, try a different approach.

Prove the equation «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mfrac»«mn»1«/mn»«mrow»«mn»1«/mn»«mo»+«/mo»«mi»sin«/mi»«mi»x«/mi»«/mrow»«/mfrac»«mo»=«/mo»«mfrac»«mrow»«mi»sec«/mi»«mi»x«/mi»«mo»§#8722;«/mo»«mi»sin«/mi»«mi»x«/mi»«mi»sec«/mi»«mi»x«/mi»«/mrow»«mrow»«mi»cos«/mi»«mi»x«/mi»«/mrow»«/mfrac»«/mrow»«/mstyle»«/math» is an identity for all permissible values of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math».

Left Side
Right Side
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨center left¨»«mtr»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mn»1«/mn»«mrow»«mn»1«/mn»«mo»+«/mo»«mi»sin«/mi»«mi»x«/mi»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mn»1«/mn»«mrow»«mn»1«/mn»«mo»+«/mo»«mi»sin«/mi»«mi»x«/mi»«/mrow»«/mfrac»«mo»§#8729;«/mo»«mfrac»«mrow»«mn»1«/mn»«mo»§#8722;«/mo»«mi»sin«/mi»«mi»x«/mi»«/mrow»«mrow»«mn»1«/mn»«mo»§#8722;«/mo»«mi»sin«/mi»«mi»x«/mi»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mn»1«/mn»«mo»§#8722;«/mo»«mi»sin«/mi»«mi»x«/mi»«/mrow»«mrow»«mn»1«/mn»«mo»§#8722;«/mo»«msup»«mi»sin«/mi»«mn»2«/mn»«/msup»«mi»x«/mi»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mn»1«/mn»«mo»§#8722;«/mo»«mi»sin«/mi»«mi»x«/mi»«/mrow»«mrow»«msup»«mi»cos«/mi»«mn»2«/mn»«/msup»«mi»x«/mi»«/mrow»«/mfrac»«/mtd»«/mtr»«/mtable»«/mstyle»«/math» 
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨center left¨»«mtr»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mi»sec«/mi»«mi»x«/mi»«mo»§#8722;«/mo»«mi»sin«/mi»«mi»x«/mi»«mi»sec«/mi»«mi»x«/mi»«/mrow»«mrow»«mi»cos«/mi»«mi»x«/mi»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mi»sec«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»(«/mi»«mn»1«/mn»«mo»§#8722;«/mo»«mi»sin«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mrow»«mi»cos«/mi»«mi»x«/mi»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mfenced»«mstyle displaystyle=¨true¨»«mfrac»«mn»1«/mn»«mrow»«mi»cos«/mi»«mi»x«/mi»«/mrow»«/mfrac»«/mstyle»«/mfenced»«mi mathvariant=¨normal¨»(«/mi»«mn»1«/mn»«mo»§#8722;«/mo»«mi»sin«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«mrow»«mi»cos«/mi»«mi»x«/mi»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mn»1«/mn»«mo»§#8722;«/mo»«mi»sin«/mi»«mi»x«/mi»«/mrow»«mrow»«msup»«mi»cos«/mi»«mn»2«/mn»«/msup»«mi»x«/mi»«/mrow»«/mfrac»«/mtd»«/mtr»«/mtable»«/mstyle»«/math» 
 
Steps to simplify this expression:

Start with the right side.
  1. Factor out «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»sec«/mi»«mi»x«/mi»«/mrow»«/mstyle»«/math»from the numerator.
  2. Replace «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»sec«/mi»«mi»x«/mi»«/mrow»«/mstyle»«/math» with a reciprocal identity.
  3. Multiply the expression in the numerator by the reciprocal of the expression in the denominator.
Now, work with the left side.
  1. Multiply the expression by a fraction equal to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»1«/mn»«/mstyle»«/math». This is called the conjugate of the denominator.
  2. Multiply the two fractions.
  3. Replace «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»1«/mn»«mo»-«/mo»«msup»«mi»sin«/mi»«mn»2«/mn»«/msup»«mi»x«/mi»«/mrow»«/mstyle»«/math» using a Pythagorean identity.

The left side equals the right side, so the identity has been proven.