Unit 4B

Trigonometry Part 2

Lesson 5: Curve Sketching and Trigonometric Curves and Their Tangents


In Unit 2B, Lesson 3, determining the equations of lines tangent to curves was introduced. These concepts will now be applied to trigonometric functions.

For the graph of the function «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mi»sin«/mi»«mi»x«/mi»«/mrow»«/mstyle»«/math», find the slope of the tangent where «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mn»0«/mn»«/mrow»«/mstyle»«/math», then determine the equation of the tangent line.

Find the derivative of the function «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mi»sin«/mi»«mi»x«/mi»«/mrow»«/mstyle»«/math».

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mi»sin«/mi»«mi»x«/mi»«/mtd»«/mtr»«mtr»«mtd»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mi»cos«/mi»«mi»x«/mi»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

To find the slope of the tangent line, substitute «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mn»0«/mn»«/mrow»«/mstyle»«/math» into the derivative function.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mi»cos«/mi»«mi»x«/mi»«/mtd»«/mtr»«mtr»«mtd»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mn»0«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mi»cos«/mi»«mn»0«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»1«/mn»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

To find the equation of the tangent line, an ordered pair is needed. One such ordered pair can be determined by evaluating «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mn»0«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mstyle»«/math».

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mi»sin«/mi»«mi»x«/mi»«/mtd»«/mtr»«mtr»«mtd»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mn»0«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mi»sin«/mi»«mn»0«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»0«/mn»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

The ordered pair is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi mathvariant=¨normal¨»(«/mi»«mn»0«/mn»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mn»0«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mstyle»«/math».

Determine the equation of the tangent line using the point «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi mathvariant=¨normal¨»(«/mi»«mn»0«/mn»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mn»0«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mstyle»«/math» and a slope of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»m«/mi»«mo»=«/mo»«mn»1«/mn»«/mrow»«/mstyle»«/math».

Method 1
Use the slope-intercept form of a line.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»y«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mi»m«/mi»«mi»x«/mi»«mo»+«/mo»«mi»b«/mi»«/mtd»«/mtr»«mtr»«mtd»«mn»0«/mn»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»1«/mn»«mi mathvariant=¨normal¨»(«/mi»«mn»0«/mn»«mi mathvariant=¨normal¨»)«/mi»«mo»+«/mo»«mi»b«/mi»«/mtd»«/mtr»«mtr»«mtd»«mn»0«/mn»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mi»b«/mi»«/mtd»«/mtr»«mtr»«mtd»«mi»y«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mi»x«/mi»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

Method 2
Use the slope-point form of a line.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»y«/mi»«mo»§#8722;«/mo»«msub»«mi»y«/mi»«mn»1«/mn»«/msub»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mi»m«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mo»§#8722;«/mo»«msub»«mi»x«/mi»«mn»1«/mn»«/msub»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«/mtr»«mtr»«mtd»«mi»y«/mi»«mo»§#8722;«/mo»«mn»0«/mn»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»1«/mn»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mo»§#8722;«/mo»«mn»0«/mn»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«/mtr»«mtr»«mtd»«mi»y«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mi»x«/mi»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

The equation of the line tangent to the curve «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mi»sin«/mi»«mi»x«/mi»«/mrow»«/mstyle»«/math» at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mn»0«/mn»«/mrow»«/mstyle»«/math» is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«mi»x«/mi»«/mrow»«/mstyle»«/math».
Find the slope and the equation of the line tangent to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mi»x«/mi»«mo»+«/mo»«mi»cos«/mi»«mi»x«/mi»«/mrow»«/mstyle»«/math» at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mfrac»«mrow»«mn»3«/mn»«mo»§#960;«/mo»«/mrow»«mn»2«/mn»«/mfrac»«/mrow»«/mstyle»«/math».

Find the derivative of the function «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mi»x«/mi»«mo»+«/mo»«mi»cos«/mi»«mi»x«/mi»«/mrow»«/mstyle»«/math».

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mi»x«/mi»«mo»+«/mo»«mi»cos«/mi»«mi»x«/mi»«/mtd»«/mtr»«mtr»«mtd»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»1«/mn»«mo»§#8722;«/mo»«mi»sin«/mi»«mi»x«/mi»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

To find the slope of the tangent line, substitute «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mfrac»«mrow»«mn»3«/mn»«mo»§#960;«/mo»«/mrow»«mn»2«/mn»«/mfrac»«/mrow»«/mstyle»«/math» into the derivative function.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»1«/mn»«mo»§#8722;«/mo»«mi»sin«/mi»«mi»x«/mi»«/mtd»«/mtr»«mtr»«mtd»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mfenced»«mfrac»«mrow»«mn»3«/mn»«mo»§#960;«/mo»«/mrow»«mn»2«/mn»«/mfrac»«/mfenced»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»1«/mn»«mo»§#8722;«/mo»«mi»sin«/mi»«mfenced»«mfrac»«mrow»«mn»3«/mn»«mo»§#960;«/mo»«/mrow»«mn»2«/mn»«/mfrac»«/mfenced»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»1«/mn»«mo»§#8722;«/mo»«mfenced»«mrow»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/mfenced»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»2«/mn»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

To find the equation of the tangent line, an ordered pair is needed. One such ordered pair can be determined by evaluating «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mfenced»«mfrac»«mrow»«mn»3«/mn»«mo»§#960;«/mo»«/mrow»«mn»2«/mn»«/mfrac»«/mfenced»«/mrow»«/mstyle»«/math».

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mi»x«/mi»«mo»+«/mo»«mi»cos«/mi»«mi»x«/mi»«/mtd»«/mtr»«mtr»«mtd»«mi»f«/mi»«mfenced»«mfrac»«mrow»«mn»3«/mn»«mo»§#960;«/mo»«/mrow»«mn»2«/mn»«/mfrac»«/mfenced»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mn»3«/mn»«mo»§#960;«/mo»«/mrow»«mn»2«/mn»«/mfrac»«mo»+«/mo»«mi»cos«/mi»«mfenced»«mfrac»«mrow»«mn»3«/mn»«mo»§#960;«/mo»«/mrow»«mn»2«/mn»«/mfrac»«/mfenced»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mn»3«/mn»«mo»§#960;«/mo»«/mrow»«mn»2«/mn»«/mfrac»«mo»+«/mo»«mn»0«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mn»3«/mn»«mo»§#960;«/mo»«/mrow»«mn»2«/mn»«/mfrac»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

The ordered pair is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfenced»«mrow»«mfrac»«mrow»«mn»3«/mn»«mo»§#960;«/mo»«/mrow»«mn»2«/mn»«/mfrac»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mfrac»«mrow»«mn»3«/mn»«mo»§#960;«/mo»«/mrow»«mn»2«/mn»«/mfrac»«/mrow»«/mfenced»«/mstyle»«/math».

Determine the equation of the tangent line using the point «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfenced»«mrow»«mfrac»«mrow»«mn»3«/mn»«mo»§#960;«/mo»«/mrow»«mn»2«/mn»«/mfrac»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mfrac»«mrow»«mn»3«/mn»«mo»§#960;«/mo»«/mrow»«mn»2«/mn»«/mfrac»«/mrow»«/mfenced»«/mstyle»«/math» and a slope of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»m«/mi»«mo»=«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math».

Use the slope-point form of a line.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»y«/mi»«mo»§#8722;«/mo»«msub»«mi»y«/mi»«mn»1«/mn»«/msub»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mi»m«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mo»§#8722;«/mo»«msub»«mi»x«/mi»«mn»1«/mn»«/msub»«mi mathvariant=¨normal¨»)«/mi»«/mtd»«/mtr»«mtr»«mtd»«mi»y«/mi»«mo»§#8722;«/mo»«mfrac»«mrow»«mn»3«/mn»«mo»§#960;«/mo»«/mrow»«mn»2«/mn»«/mfrac»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»2«/mn»«mfenced»«mrow»«mi»x«/mi»«mo»§#8722;«/mo»«mfrac»«mrow»«mn»3«/mn»«mo»§#960;«/mo»«/mrow»«mn»2«/mn»«/mfrac»«/mrow»«/mfenced»«/mtd»«/mtr»«mtr»«mtd»«mi»y«/mi»«mo»§#8722;«/mo»«mfrac»«mrow»«mn»3«/mn»«mo»§#960;«/mo»«/mrow»«mn»2«/mn»«/mfrac»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»2«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»3«/mn»«mo»§#960;«/mo»«/mtd»«/mtr»«mtr»«mtd»«mi»y«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»2«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mfrac»«mrow»«mn»3«/mn»«mo»§#960;«/mo»«/mrow»«mn»2«/mn»«/mfrac»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

The equation of the line tangent to the curve «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»=«/mo»«mi»x«/mi»«mo»+«/mo»«mi»cos«/mi»«mi»x«/mi»«/mrow»«/mstyle»«/math» at «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mfrac»«mrow»«mn»3«/mn»«mo»§#960;«/mo»«/mrow»«mn»2«/mn»«/mfrac»«/mrow»«/mstyle»«/math» is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«mn»2«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mfrac»«mrow»«mn»3«/mn»«mo»§#960;«/mo»«/mrow»«mn»2«/mn»«/mfrac»«/mrow»«/mstyle»«/math».

The equation of the line can also be written in general form as «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»4«/mn»«mi»x«/mi»«mo»§#8722;«/mo»«mn»2«/mn»«mi»y«/mi»«mo»§#8722;«/mo»«mn»3«/mn»«mo»§#960;«/mo»«mo»=«/mo»«mn»0«/mn»«/mrow»«/mstyle»«/math».