Unit 5

Applications of Derivatives

A. Maximum and Minimum Problems

Lesson 1: Numbers Problems and Geometric Applications


Practice

Once you feel confident with Maximum and Minimum Problems: Numbers Problems, click on the Practice tab and complete problems 1 and 2. Check your answers by going to the Solutions tab.

Instructions:
Click the Download File button to download a printable PDF of the questions. Answer each of the following practice questions on a separate piece of paper. Step by step solutions are provided under the Solutions tab. You will learn the material more thoroughly if you complete the questions before checking the answers.

1.
Find two consecutive natural numbers such that the sum of the larger number and four times the reciprocal of the smaller number is a minimum.

2.
The sum of two positive numbers is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»4«/mn»«/mstyle»«/math». If the sum of their cubes is a minimum, what are the two numbers?
1.
Find two consecutive natural numbers such that the sum of the larger number and four times the reciprocal of the smaller number is a minimum.

Let the two numbers be «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mstyle»«/math» and let «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»S«/mi»«/mstyle»«/math» be the sum.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»S«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mo»+«/mo»«mn»4«/mn»«mfenced»«mfrac»«mn»1«/mn»«mi»x«/mi»«/mfrac»«/mfenced»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«mo»+«/mo»«mfrac»«mn»4«/mn»«mi»x«/mi»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«mo»+«/mo»«mn»4«/mn»«msup»«mi»x«/mi»«mrow»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/msup»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

Determine the derivative of the function, and set it equal to zero to find the critical number(s).
        
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»S«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«mo»+«/mo»«mn»4«/mn»«msup»«mi»x«/mi»«mrow»«mo»§#8722;«/mo»«mn»1«/mn»«/mrow»«/msup»«/mtd»«/mtr»«mtr»«mtd»«mi»S«/mi»«mo mathvariant=¨italic¨»`«/mo»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»1«/mn»«mo»§#8722;«/mo»«mn»4«/mn»«msup»«mi»x«/mi»«mrow»«mo»§#8722;«/mo»«mn»2«/mn»«/mrow»«/msup»«/mtd»«/mtr»«mtr»«mtd/»«mtd/»«mtd/»«/mtr»«mtr»«mtd»«mn»0«/mn»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»1«/mn»«mo»§#8722;«/mo»«mfrac»«mn»4«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mfrac»«/mtd»«/mtr»«mtr»«mtd»«mfrac»«mn»4«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mfrac»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»1«/mn»«/mtd»«/mtr»«mtr»«mtd»«mn»4«/mn»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mtd»«/mtr»«mtr»«mtd»«mn»2«/mn»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mi»x«/mi»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»


«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»S«/mi»«mo mathvariant=¨italic¨»``«/mo»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»8«/mn»«msup»«mi»x«/mi»«mrow»«mo»-«/mo»«mn»3«/mn»«/mrow»«/msup»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mn»8«/mn»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«/mfrac»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

If «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»=«/mo»«mn»4«/mn»«/mrow»«/mstyle»«/math», then «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»§#8800;«/mo»«mo»§#177;«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math». However, since «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» is a natural number, it cannot be negative. And, although «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mn»0«/mn»«/mrow»«/mstyle»«/math» is also critical, it is not a natural number, and thus not a suitable solution value.

By the second derivative test, the function is at a minimum value where «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«mo»=«/mo»«mn»2«/mn»«/mstyle»«/math» because the second derivative is positive at that point (concave up). As such, the two numbers are «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«/mstyle»«/math».

2.
The sum of two positive numbers is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»4«/mn»«/mstyle»«/math». If the sum of their cubes is a minimum, what are the two numbers?

Let «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math» be the two numbers and let «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»S«/mi»«/mstyle»«/math» be the sum.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»x«/mi»«mo»+«/mo»«mi»y«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»4«/mn»«/mtd»«/mtr»«mtr»«mtd»«mi»y«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»4«/mn»«mo»-«/mo»«mi»x«/mi»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»
       
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»S«/mi»«mo»=«/mo»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»+«/mo»«msup»«mi»y«/mi»«mn»3«/mn»«/msup»«/mrow»«/mstyle»«/math»

To find «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»S«/mi»«/mstyle»«/math», substitute «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«mn»4«/mn»«mo»§#8722;«/mo»«mi»x«/mi»«/mrow»«/mstyle»«/math» into «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»S«/mi»«mo»=«/mo»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»+«/mo»«msup»«mi»y«/mi»«mn»3«/mn»«/msup»«/mrow»«/mstyle»«/math».

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»S«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»+«/mo»«msup»«mi»y«/mi»«mn»3«/mn»«/msup»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»+«/mo»«mi mathvariant=¨normal¨»(«/mi»«mn»4«/mn»«mo»§#8722;«/mo»«mi»x«/mi»«msup»«mi mathvariant=¨normal¨»)«/mi»«mn»3«/mn»«/msup»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»+«/mo»«mn»64«/mn»«mo»§#8722;«/mo»«mn»48«/mn»«mi»x«/mi»«mo»+«/mo»«mn»12«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»64«/mn»«mo»§#8722;«/mo»«mn»48«/mn»«mi»x«/mi»«mo»+«/mo»«mn»12«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»
        
Determine the derivative of the function, and set it equal to zero to find the critical number(s).

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»S«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»64«/mn»«mo»§#8722;«/mo»«mn»48«/mn»«mi»x«/mi»«mo»+«/mo»«mn»12«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mtd»«/mtr»«mtr»«mtd»«mfrac»«mrow»«mi»d«/mi»«mi»S«/mi»«/mrow»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«/mfrac»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«mn»48«/mn»«mo»+«/mo»«mn»24«/mn»«mi»x«/mi»«/mtd»«/mtr»«mtr»«mtd/»«mtd/»«mtd/»«/mtr»«mtr»«mtd»«mn»0«/mn»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8722;«/mo»«mn»48«/mn»«mo»+«/mo»«mn»24«/mn»«mi»x«/mi»«/mtd»«/mtr»«mtr»«mtd»«mn»48«/mn»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»24«/mn»«mi»x«/mi»«/mtd»«/mtr»«mtr»«mtd»«mn»2«/mn»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mi»x«/mi»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»


«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mfrac»«mrow»«msup»«mi»d«/mi»«mn»2«/mn»«/msup»«mi»S«/mi»«/mrow»«mrow»«mi»d«/mi»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfrac»«mo»=«/mo»«mn»24«/mn»«/mrow»«/mstyle»«/math»
        
By the second derivative test, the function is at a minimum where «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mn»2«/mn»«/mrow»«/mstyle»«/math» because the second derivative is positive for all «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» (concave up).

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»When«/mi»«mo»§#160;«/mo»«mi»x«/mi»«mo»=«/mo»«mn»2«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mi»y«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»4«/mn»«mo»§#8722;«/mo»«mn»2«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»2«/mn»«/mtd»«/mtr»«/mtable»«/mstyle»«/math».

The numbers are «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math».