L5 Related Motion - Part 3
Completion requirements
Unit 5
Applications of Derivatives
B. Related Rates Problems
Lesson 5: Related Motion
The derivative of a variable with respect to time, like «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«mrow»«mi»d«/mi»«mi»t«/mi»«/mrow»«/mfrac»«/math», can be interpreted in two ways: as a rate at which a length
or distance changes with time (as in the previous Examples) or as the speed of a moving object. The following examples will focus on «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«mrow»«mi»d«/mi»«mi»t«/mi»«/mrow»«/mfrac»«/math»
as the speed of a moving object.
A «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mn»10«/mn»«mo»§#160;«/mo»«mi mathvariant=¨normal¨»m«/mi»«/math» ladder, leaning against a wall, begins to slide down the wall. How fast is the bottom of the ladder sliding away from the base of the
wall when the top of the ladder reaches «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mn»6«/mn»«mo»§#160;«/mo»«mi mathvariant=¨normal¨»m«/mi»«/math» up the wall and is sliding down the wall at a rate of «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mn»2«/mn»«mo»§#160;«/mo»«mi mathvariant=¨normal¨»m«/mi»«mo»/«/mo»«mi mathvariant=¨normal¨»s«/mi»«/math»?

Step 1:
Draw and label a diagram.
Let «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«/math» be the distance, in «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi mathvariant=¨normal¨»m«/mi»«/math», between the foot of the ladder and the wall.
Let «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»y«/mi»«/math» be the distance, in «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi mathvariant=¨normal¨»m«/mi»«/math», that the top of the ladder reaches up the wall.
Let «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«/math» be the distance, in «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi mathvariant=¨normal¨»m«/mi»«/math», between the foot of the ladder and the wall.
Let «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»y«/mi»«/math» be the distance, in «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi mathvariant=¨normal¨»m«/mi»«/math», that the top of the ladder reaches up the wall.

Step 2:
State the given and required related rates.
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨left¨»«mtr»«mtd»«msub»«mfenced open=¨¨ close=¨|¨»«mfrac»«mrow»«mi»d«/mi»«mi»y«/mi»«/mrow»«mrow»«mi»d«/mi»«mi»t«/mi»«/mrow»«/mfrac»«/mfenced»«mrow»«mi»y«/mi»«mo»=«/mo»«mn»6«/mn»«/mrow»«/msub»«mo»=«/mo»«mo»§#8722;«/mo»«mn»2«/mn»«mo»§#160;«/mo»«mi mathvariant=¨normal¨» «/mi»«mi mathvariant=¨normal¨»m«/mi»«mo»/«/mo»«mi mathvariant=¨normal¨»s«/mi»«/mtd»«/mtr»«mtr»«mtd»«mspace/»«/mtd»«/mtr»«mtr»«mtd»«msub»«mfenced open=¨¨ close=¨|¨»«mfrac»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«mrow»«mi»d«/mi»«mi»t«/mi»«/mrow»«/mfrac»«/mfenced»«mrow»«mi»y«/mi»«mo»=«/mo»«mn»6«/mn»«/mrow»«/msub»«mo»=«/mo»«mi mathvariant=¨normal¨»?«/mi»«/mtd»«/mtr»«/mtable»«/math»
Step 3:
Write an equation.
Find «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«/math» before proceeding.
Solve for «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«/math» when «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»y«/mi»«mo»=«/mo»«mn»6«/mn»«/math».
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«msup»«mi»y«/mi»«mn»2«/mn»«/msup»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«msup»«mn»10«/mn»«mn»2«/mn»«/msup»«/mtd»«/mtr»«mtr»«mtd»«mfrac»«mi»d«/mi»«mrow»«mi»d«/mi»«mi»t«/mi»«/mrow»«/mfrac»«mfenced»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mfenced»«mo»+«/mo»«mfrac»«mi»d«/mi»«mrow»«mi»d«/mi»«mi»t«/mi»«/mrow»«/mfrac»«mfenced»«msup»«mi»y«/mi»«mn»2«/mn»«/msup»«/mfenced»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mi»d«/mi»«mrow»«mi»d«/mi»«mi»t«/mi»«/mrow»«/mfrac»«mfenced»«mn»100«/mn»«/mfenced»«/mtd»«/mtr»«mtr»«mtd»«mn»2«/mn»«mi»x«/mi»«mo»§#8729;«/mo»«mfrac»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«mrow»«mi»d«/mi»«mi»t«/mi»«/mrow»«/mfrac»«mo»+«/mo»«mn»2«/mn»«mi»y«/mi»«mo»§#8729;«/mo»«mfrac»«mrow»«mi»d«/mi»«mi»y«/mi»«/mrow»«mrow»«mi»d«/mi»«mi»t«/mi»«/mrow»«/mfrac»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»0«/mn»«/mtd»«/mtr»«mtr»«mtd»«mi»x«/mi»«mo»§#8729;«/mo»«mfrac»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«mrow»«mi»d«/mi»«mi»t«/mi»«/mrow»«/mfrac»«mo»+«/mo»«mi»y«/mi»«mo»§#8729;«/mo»«mfrac»«mrow»«mi»d«/mi»«mi»y«/mi»«/mrow»«mrow»«mi»d«/mi»«mi»t«/mi»«/mrow»«/mfrac»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»0«/mn»«/mtd»«/mtr»«/mtable»«/math»
Find «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«/math» before proceeding.
Solve for «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«/math» when «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»y«/mi»«mo»=«/mo»«mn»6«/mn»«/math».
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«msup»«mi»y«/mi»«mn»2«/mn»«/msup»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«msup»«mn»10«/mn»«mn»2«/mn»«/msup»«/mtd»«/mtr»«mtr»«mtd»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«msup»«mn»6«/mn»«mn»2«/mn»«/msup»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«msup»«mn»10«/mn»«mn»2«/mn»«/msup»«/mtd»«/mtr»«mtr»«mtd»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»36«/mn»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»100«/mn»«/mtd»«/mtr»«mtr»«mtd»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»64«/mn»«/mtd»«/mtr»«mtr»«mtd»«mi»x«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»8«/mn»«/mtd»«/mtr»«/mtable»«/math»
Step 4:
Substitute the values of «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«mo»,«/mo»«mo»§#160;«/mo»«mi»y«/mi»«/math», and «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mrow»«mi»d«/mi»«mi»y«/mi»«/mrow»«mrow»«mi»d«/mi»«mi»t«/mi»«/mrow»«/mfrac»«/math»
into the derivative and solve for «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«mrow»«mi»d«/mi»«mi»t«/mi»«/mrow»«/mfrac»«/math».
The ladder is sliding away from the base of the wall at a rate of «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mn»3«/mn»«mn»2«/mn»«/mfrac»«mi mathvariant=¨normal¨» «/mi»«mo»=«/mo»«mi mathvariant=¨normal¨» «/mi»«mn»1«/mn»«mi mathvariant=¨normal¨».«/mi»«mn»5«/mn»«mo»§#160;«/mo»«mi mathvariant=¨normal¨» «/mi»«mi mathvariant=¨normal¨»m«/mi»«mo»/«/mo»«mi mathvariant=¨normal¨»s«/mi»«/math».
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»x«/mi»«mo»§#8729;«/mo»«mfrac»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«mrow»«mi»d«/mi»«mi»t«/mi»«/mrow»«/mfrac»«mo»+«/mo»«mi»y«/mi»«mo»§#8729;«/mo»«mfrac»«mrow»«mi»d«/mi»«mi»y«/mi»«/mrow»«mrow»«mi»d«/mi»«mi»t«/mi»«/mrow»«/mfrac»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»0«/mn»«/mtd»«/mtr»«mtr»«mtd»«mn»8«/mn»«mfenced»«mfrac»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«mrow»«mi»d«/mi»«mi»t«/mi»«/mrow»«/mfrac»«/mfenced»«mo»+«/mo»«mn»6«/mn»«mfenced»«mrow»«mo»§#8722;«/mo»«mn»2«/mn»«/mrow»«/mfenced»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»0«/mn»«/mtd»«/mtr»«mtr»«mtd»«mn»8«/mn»«mfenced»«mfrac»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«mrow»«mi»d«/mi»«mi»t«/mi»«/mrow»«/mfrac»«/mfenced»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»12«/mn»«/mtd»«/mtr»«mtr»«mtd»«mfrac»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«mrow»«mi»d«/mi»«mi»t«/mi»«/mrow»«/mfrac»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mn»12«/mn»«mn»8«/mn»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mn»3«/mn»«mn»2«/mn»«/mfrac»«/mtd»«/mtr»«/mtable»«/math»
The ladder is sliding away from the base of the wall at a rate of «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mn»3«/mn»«mn»2«/mn»«/mfrac»«mi mathvariant=¨normal¨» «/mi»«mo»=«/mo»«mi mathvariant=¨normal¨» «/mi»«mn»1«/mn»«mi mathvariant=¨normal¨».«/mi»«mn»5«/mn»«mo»§#160;«/mo»«mi mathvariant=¨normal¨» «/mi»«mi mathvariant=¨normal¨»m«/mi»«mo»/«/mo»«mi mathvariant=¨normal¨»s«/mi»«/math».
Watch the video A Similar Triangles Question to see how to setup and solve a problem that involves similar triangles.
Skill Builder
For more information on similar triangles, click the Skill Builder button to access the Skill Builder page.