L4 Areas II - Part 2
Completion requirements
Unit 7A
Integrals Part 1
Lesson 4: Areas Part 2
In the previous Lesson, the Fundamental Theorem of Calculus was introduced, and a more efficient way of evaluating the following limit was developed.
In fact, the sum was called the definite integral of function «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/math» from «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»a«/mi»«/math» to «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»b«/mi»«/math». And, the definite integral was represented by «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msubsup»«mo»§#8747;«/mo»«mi»a«/mi»«mi»b«/mi»«/msubsup»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mi»d«/mi»«mi»x«/mi»«/math».
Recall this integral can be evaluated by finding the antiderivative «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»F«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math», evaluating «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»F«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math» at «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«mo»=«/mo»«mi»a«/mi»«/math» and «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«mo»=«/mo»«mi»b«/mi»«/math», and then finding the difference between the two, «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»F«/mi»«mfenced»«mi»b«/mi»«/mfenced»«mo»§#8722;«/mo»«mi»F«/mi»«mfenced»«mi»a«/mi»«/mfenced»«/math».
If «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»y«/mi»«mo»=«/mo»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/math» is a non-negative continuous function on the interval «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfenced open=¨[¨ close=¨]¨»«mrow»«mi»a«/mi»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mi»b«/mi»«/mrow»«/mfenced»«/math», one interpretation of the definite integral is the area bounded by the graph of the function, the «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«/math»-axis, and the vertical lines «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«mo»=«/mo»«mi»a«/mi»«/math» and «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«mo»=«/mo»«mi»b«/mi»«/math».
Because the definite integral is based on the indefinite integral «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»F«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math», the properties of the indefinite integral can be extended to the definite integral. As such, the following properties apply.
Let «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/math» and «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/math» be continuous functions defined on the interval «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfenced open=¨[¨ close=¨]¨»«mrow»«mi»a«/mi»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mi»b«/mi»«/mrow»«/mfenced»«/math» and let «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»c«/mi»«/math» be a real constant.
The third property states that switching the limits of integration changes the sign of the integral.
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«munder»«mi»lim«/mi»«mrow»«mi»n«/mi»«mo»§#8594;«/mo»«mo»§#8734;«/mo»«/mrow»«/munder»«munderover»«mo»§#8721;«/mo»«mrow»«mi»i«/mi»«mo»=«/mo»«mn»1«/mn»«/mrow»«mi»n«/mi»«/munderover»«mi»f«/mi»«mfenced»«msub»«mi»x«/mi»«mi»i«/mi»«/msub»«/mfenced»«mo»§#916;«/mo»«mi»x«/mi»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mspace width=¨0.125em¨/»«mi»where«/mi»«mo»§#160;«/mo»«mi mathvariant=¨normal¨» «/mi»«mo»§#916;«/mo»«mi»x«/mi»«mo»=«/mo»«mfrac»«mrow»«mi»b«/mi»«mo»§#8722;«/mo»«mi»a«/mi»«/mrow»«mi»n«/mi»«/mfrac»«mi mathvariant=¨normal¨» «/mi»«mo»§#160;«/mo»«mi»and«/mi»«mo»§#160;«/mo»«mi mathvariant=¨normal¨» «/mi»«msub»«mi»x«/mi»«mi»i«/mi»«/msub»«mo»=«/mo»«mi»a«/mi»«mo»+«/mo»«mi»i«/mi»«mo»§#916;«/mo»«mi»x«/mi»«/math»
In fact, the sum was called the definite integral of function «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/math» from «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»a«/mi»«/math» to «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»b«/mi»«/math». And, the definite integral was represented by «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msubsup»«mo»§#8747;«/mo»«mi»a«/mi»«mi»b«/mi»«/msubsup»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mi»d«/mi»«mi»x«/mi»«/math».
Recall this integral can be evaluated by finding the antiderivative «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»F«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math», evaluating «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»F«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math» at «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«mo»=«/mo»«mi»a«/mi»«/math» and «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«mo»=«/mo»«mi»b«/mi»«/math», and then finding the difference between the two, «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»F«/mi»«mfenced»«mi»b«/mi»«/mfenced»«mo»§#8722;«/mo»«mi»F«/mi»«mfenced»«mi»a«/mi»«/mfenced»«/math».
If «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»y«/mi»«mo»=«/mo»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/math» is continuous on the interval «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfenced open=¨[¨ close=¨]¨»«mrow»«mi»a«/mi»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mi»b«/mi»«/mrow»«/mfenced»«/math», then «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msubsup»«mo»§#8747;«/mo»«mi»a«/mi»«mi»b«/mi»«/msubsup»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mi»d«/mi»«mi»x«/mi»«mo»=«/mo»«mi»F«/mi»«mfenced»«mi»b«/mi»«/mfenced»«mo»-«/mo»«mi»F«/mi»«mfenced»«mi»a«/mi»«/mfenced»«/math»,
where «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»F«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math» is an antiderivative of «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math».
|
If «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»y«/mi»«mo»=«/mo»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/math» is a non-negative continuous function on the interval «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfenced open=¨[¨ close=¨]¨»«mrow»«mi»a«/mi»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mi»b«/mi»«/mrow»«/mfenced»«/math», one interpretation of the definite integral is the area bounded by the graph of the function, the «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«/math»-axis, and the vertical lines «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«mo»=«/mo»«mi»a«/mi»«/math» and «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«mo»=«/mo»«mi»b«/mi»«/math».
Because the definite integral is based on the indefinite integral «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»F«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math», the properties of the indefinite integral can be extended to the definite integral. As such, the following properties apply.
Let «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/math» and «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/math» be continuous functions defined on the interval «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfenced open=¨[¨ close=¨]¨»«mrow»«mi»a«/mi»«mi mathvariant=¨normal¨»,«/mi»«mo»§#160;«/mo»«mi»b«/mi»«/mrow»«/mfenced»«/math» and let «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»c«/mi»«/math» be a real constant.
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨left¨»«mtr»«mtd»«mo»§#8226;«/mo»«mi mathvariant=¨normal¨» «/mi»«msubsup»«mo»§#8747;«/mo»«mi»a«/mi»«mi»b«/mi»«/msubsup»«mi»c«/mi»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mi mathvariant=¨normal¨» «/mi»«mi»d«/mi»«mi»x«/mi»«mo»=«/mo»«mi»c«/mi»«msubsup»«mo»§#8747;«/mo»«mi»a«/mi»«mi»b«/mi»«/msubsup»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mi»d«/mi»«mi»x«/mi»«/mtd»«/mtr»«mtr»«mtd»«mo»§#8226;«/mo»«mi mathvariant=¨normal¨» «/mi»«msubsup»«mo»§#8747;«/mo»«mi»a«/mi»«mi»b«/mi»«/msubsup»«mfenced open=¨[¨ close=¨]¨»«mrow»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»§#177;«/mo»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mrow»«/mfenced»«mi»d«/mi»«mi»x«/mi»«mo»=«/mo»«msubsup»«mo»§#8747;«/mo»«mi»a«/mi»«mi»b«/mi»«/msubsup»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mi»d«/mi»«mi»x«/mi»«mo»§#177;«/mo»«msubsup»«mo»§#8747;«/mo»«mi»a«/mi»«mi»b«/mi»«/msubsup»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mi»d«/mi»«mi»x«/mi»«/mtd»«/mtr»«mtr»«mtd»«mo»§#8226;«/mo»«mi mathvariant=¨normal¨» «/mi»«msubsup»«mo»§#8747;«/mo»«mi»a«/mi»«mi»b«/mi»«/msubsup»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mi mathvariant=¨normal¨» «/mi»«mi»d«/mi»«mi»x«/mi»«mo»=«/mo»«mo»§#8722;«/mo»«msubsup»«mo»§#8747;«/mo»«mi»b«/mi»«mi»a«/mi»«/msubsup»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mi mathvariant=¨normal¨» «/mi»«mi»d«/mi»«mi»x«/mi»«/mtd»«/mtr»«/mtable»«/math»
The third property states that switching the limits of integration changes the sign of the integral.