Unit 7A

Integrals Part 1

Lesson 6: Integration by Parts


Integration by Parts

Integration by parts is a general technique of integration. Based on the derivative of a product, this technique is used to express an integral that is difficult to evaluate in terms of a second integral that is easier to evaluate.

The development of integration by parts is as follows.

Assume «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math» and «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math» are differentiable functions.

Recall the product rule.

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mi»d«/mi»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«/mfrac»«mfenced open=¨[¨ close=¨]¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mo»§#8729;«/mo»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mfenced»«mo»=«/mo»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mi»g«/mi»«mo mathvariant=¨italic¨»`«/mo»«mfenced»«mi»x«/mi»«/mfenced»«mo»+«/mo»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math»

Integrate both sides.

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mo»§#8747;«/mo»«mfrac»«mi»d«/mi»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«/mfrac»«mfenced open=¨[¨ close=¨]¨»«mrow»«mi»f«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mi»g«/mi»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«/mrow»«/mfenced»«mi mathvariant=¨normal¨» «/mi»«mi»d«/mi»«mi»x«/mi»«mo»=«/mo»«mo»§#8747;«/mo»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mi»g«/mi»«mo mathvariant=¨italic¨»`«/mo»«mfenced»«mi»x«/mi»«/mfenced»«mi mathvariant=¨normal¨» «/mi»«mi»d«/mi»«mi»x«/mi»«mo»+«/mo»«mo»§#8747;«/mo»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mi mathvariant=¨normal¨» «/mi»«mi»d«/mi»«mi»x«/mi»«/math»

Simplify.

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»=«/mo»«mo»§#8747;«/mo»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mi»g«/mi»«mo mathvariant=¨italic¨»`«/mo»«mfenced»«mi»x«/mi»«/mfenced»«mi mathvariant=¨normal¨» «/mi»«mi»d«/mi»«mi»x«/mi»«mo»+«/mo»«mo»§#8747;«/mo»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mi mathvariant=¨normal¨» «/mi»«mi»d«/mi»«mi»x«/mi»«/math»

Let «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»u«/mi»«mo»=«/mo»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math» and let «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»v«/mi»«mo»=«/mo»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math».

Substitute «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»u«/mi»«mo»=«/mo»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math» and «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»v«/mi»«mo»=«/mo»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math» in «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»=«/mo»«mo»§#8747;«/mo»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mi»g«/mi»«mo mathvariant=¨italic¨»`«/mo»«mfenced»«mi»x«/mi»«/mfenced»«mi mathvariant=¨normal¨» «/mi»«mi»d«/mi»«mi»x«/mi»«mo»+«/mo»«mo»§#8747;«/mo»«mi»f«/mi»«mo mathvariant=¨italic¨»`«/mo»«mi mathvariant=¨normal¨»(«/mi»«mi»x«/mi»«mi mathvariant=¨normal¨»)«/mi»«mi»g«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mi mathvariant=¨normal¨» «/mi»«mi»d«/mi»«mi»x«/mi»«/math».

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»u«/mi»«mi»v«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8747;«/mo»«mi»u«/mi»«mfrac»«mrow»«mi»d«/mi»«mi»v«/mi»«/mrow»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«/mfrac»«mi mathvariant=¨normal¨» «/mi»«mi»d«/mi»«mi»x«/mi»«mo»+«/mo»«mo»§#8747;«/mo»«mfrac»«mrow»«mi»d«/mi»«mi»u«/mi»«/mrow»«mrow»«mi»d«/mi»«mi»x«/mi»«/mrow»«/mfrac»«mi»v«/mi»«mi mathvariant=¨normal¨» «/mi»«mi»d«/mi»«mi»x«/mi»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»§#8747;«/mo»«mi»u«/mi»«mi mathvariant=¨normal¨» «/mi»«mi»d«/mi»«mi»v«/mi»«mo»+«/mo»«mo»§#8747;«/mo»«mi»v«/mi»«mi mathvariant=¨normal¨» «/mi»«mi»d«/mi»«mi»u«/mi»«/mtd»«/mtr»«/mtable»«/math»
     
Rearranging the equation «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»u«/mi»«mi»v«/mi»«mo»=«/mo»«mo»§#8747;«/mo»«mi»u«/mi»«mi mathvariant=¨normal¨» «/mi»«mi»d«/mi»«mi»v«/mi»«mo»+«/mo»«mo»§#8747;«/mo»«mi»v«/mi»«mi mathvariant=¨normal¨» «/mi»«mi»d«/mi»«mi»u«/mi»«/math» results in the integration by parts formula.

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mo»§#8747;«/mo»«mi»u«/mi»«mi mathvariant=¨normal¨» «/mi»«mi»d«/mi»«mi»v«/mi»«mo»=«/mo»«mi»u«/mi»«mi»v«/mi»«mo»§#8722;«/mo»«mo»§#8747;«/mo»«mi»v«/mi»«mi mathvariant=¨normal¨» «/mi»«mi»d«/mi»«mi»u«/mi»«/math»

The examples that follow will show that with careful selection of «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»u«/mi»«/math» and «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»v«/mi»«/math» in the original problem, the integral «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mo»§#8747;«/mo»«mi»v«/mi»«mi mathvariant=¨normal¨» «/mi»«mi»d«/mi»«mi»u«/mi»«/math» will be easier to evaluate than the original integral «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mo»§#8747;«/mo»«mi»u«/mi»«mi mathvariant=¨normal¨» «/mi»«mi»d«/mi»«mi»v«/mi»«/math».