Unit 7B

Integrals Part 2

Lesson 2: Displacement, Velocity, and Acceleration


The velocity (in metres per second) of an object is given by the function «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»v«/mi»«mfenced»«mi»t«/mi»«/mfenced»«mo»=«/mo»«mn»3«/mn»«msup»«mi»t«/mi»«mn»2«/mn»«/msup»«mo»§#8722;«/mo»«mn»5«/mn»«mi»t«/mi»«mo»+«/mo»«mn»8«/mn»«/math», where «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»t«/mi»«mo»§#8805;«/mo»«mn»0«/mn»«/math». Find the acceleration at «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»t«/mi»«mo»=«/mo»«mn»3«/mn»«/math».

To find the acceleration of the object, find the derivative of the velocity function.

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»a«/mi»«mfenced»«mi»t«/mi»«/mfenced»«mo»=«/mo»«mfrac»«mrow»«mi»d«/mi»«mi»v«/mi»«/mrow»«mrow»«mi»d«/mi»«mi»t«/mi»«/mrow»«/mfrac»«mo»=«/mo»«mn»6«/mn»«mi»t«/mi»«mo»§#8722;«/mo»«mn»5«/mn»«/math»

For «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»t«/mi»«mo»=«/mo»«mn»3«/mn»«/math»:

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»a«/mi»«mfenced»«mn»3«/mn»«/mfenced»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»6«/mn»«mfenced»«mn»3«/mn»«/mfenced»«mo»§#8722;«/mo»«mn»5«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»18«/mn»«mo»§#8722;«/mo»«mn»5«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»13«/mn»«/mtd»«/mtr»«/mtable»«/math»

The acceleration of the object is «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mn»13«/mn»«mo»§#160;«/mo»«mi mathvariant=¨normal¨» «/mi»«mi mathvariant=¨normal¨»m«/mi»«mo»/«/mo»«msup»«mi mathvariant=¨normal¨»s«/mi»«mn»2«/mn»«/msup»«/math» when «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»t«/mi»«mo»=«/mo»«mn»3«/mn»«/math».
Watch the video Displacement, Velocity, and Acceleration for an example of how these concepts are linked together. Note the notation for the position function is denoted by «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»d«/mi»«mfenced»«mi»t«/mi»«/mfenced»«/math» in the video instead of «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»s«/mi»«mfenced»«mi»t«/mi»«/mfenced»«/math».

In the video, the terms displacement and distance are used interchangeably. Distance is a term that is used more commonly in mathematics, whereas, displacement is a term that is used in physics. It is important to be aware of the context in which a position function is given to understand if it represents distance or displacement.

For example, in the video, Farmer Greg reached a maximum height of «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mn»196«/mn»«mi mathvariant=¨normal¨» «/mi»«mo»§#160;«/mo»«mi»ft«/mi»«/math» (his maximum height). However, he also started at a height of «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mn»160«/mn»«mo»§#160;«/mo»«mi»ft«/mi»«/math». So, he only flew «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mn»36«/mn»«mo»§#160;«/mo»«mi mathvariant=¨normal¨» «/mi»«mi»ft«/mi»«/math» higher into the air, but his total vertical distance travelled was «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfenced»«mrow»«mn»196«/mn»«mo»§#160;«/mo»«mi»ft«/mi»«mo»§#8722;«/mo»«mn»160«/mn»«mo»§#160;«/mo»«mi»ft«/mi»«/mrow»«/mfenced»«mo»+«/mo»«mn»196«/mn»«mo»§#160;«/mo»«mi»ft«/mi»«mo»=«/mo»«mn»232«/mn»«mo»§#160;«/mo»«mspace width=¨0.125em¨/»«mi»ft«/mi»«/math», and his displacement was actually «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mo»-«/mo»«mn»160«/mn»«mo»§#160;«/mo»«mi»ft«/mi»«/math» since he landed «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mn»160«/mn»«mo»§#160;«/mo»«mi»ft«/mi»«/math» below where he started. So, be careful to consider context, and even draw a diagram to eliminate any risk of confusion.