U2A L1 Slope Skill Builder
Completion requirements
Unit 2A
Derivatives Part 1
Lesson 1: Limits, Secants, and Tangents
Skill Builder
Slope
A linear relation's rate of change corresponds to the slope of the line formed when that relation is graphed. The slope of a line takes into consideration the line's steepness and direction.
Slope
the ratio of the vertical change to the horizontal change of a line or line segment |
The slope of a line measures how steep a line is by comparing the vertical change of the line to the horizontal change of the line. The variable «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»m«/mi»«/mstyle»«/math»
is often used to represent slope. The following two formulas are equivalent.
Lines with a negative slope decrease from left to right.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»slope«/mi»«mo»=«/mo»«mfrac»«mrow»«mi»vertical«/mi»«mo»§#160;«/mo»«mi»change«/mi»«/mrow»«mrow»«mi»horizontal«/mi»«mo»§#160;«/mo»«mi»change«/mi»«/mrow»«/mfrac»«mo»=«/mo»«mfrac»«mrow»«mo»§#8710;«/mo»«mi»y«/mi»«/mrow»«mrow»«mo»§#8710;«/mo»«mi»x«/mi»«/mrow»«/mfrac»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«mi»m«/mi»«mo»=«/mo»«mfrac»«mi»rise«/mi»«mi»run«/mi»«/mfrac»«/mrow»«/mstyle»«/math»
Lines with a positive slope increase from left to right.
Lines with a negative slope decrease from left to right.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»§#8710;«/mo»«/mstyle»«/math» is the Greek letter delta and is used to represent a change.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»§#8710;«/mo»«mi»y«/mi»«/mstyle»«/math» represents the amount of vertical change. «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»§#8710;«/mo»«mi»x«/mi»«/mstyle»«/math» represents the amount of horizontal change. |

The rise, or «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»§#8710;«/mo»«mi»y«/mi»«/mstyle»«/math», can be determined by subtracting the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-values of any two points on a line or line segment. This is often written as «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«msub»«mi»y«/mi»«mn»2«/mn»«/msub»«mo»-«/mo»«msub»«mi»y«/mi»«mn»1«/mn»«/msub»«/mrow»«/mstyle»«/math».
The run, or «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mo»§#8710;«/mo»«mi»x«/mi»«/mstyle»«/math», can be determined by subtracting the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-values of the same two points on the line or line segment. This is often written as «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«msub»«mi»x«/mi»«mn»2«/mn»«/msub»«mo»-«/mo»«msub»«mi»x«/mi»«mn»1«/mn»«/msub»«/mstyle»«/math».
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»m«/mi»«mo»=«/mo»«mfrac»«mi»rise«/mi»«mi»run«/mi»«/mfrac»«mo»=«/mo»«mfrac»«mrow»«msub»«mi»y«/mi»«mn»2«/mn»«/msub»«mo»-«/mo»«msub»«mi»y«/mi»«mn»1«/mn»«/msub»«/mrow»«mrow»«msub»«mi»x«/mi»«mn»2«/mn»«/msub»«mo»-«/mo»«msub»«mi»x«/mi»«mn»1«/mn»«/msub»«/mrow»«/mfrac»«/mrow»«/mstyle»«/math»

When a line is horizontal, the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-values for all points on the line are equal, so the numerator of the slope formula will be
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»0«/mn»«/mstyle»«/math», which means the slope will be «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»0«/mn»«/mstyle»«/math».
When a line is vertical, the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-values for all points on the line are equal, so the denominator of the slope formula will be «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»0«/mn»«/mstyle»«/math». Division by «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»0«/mn»«/mstyle»«/math» is undefined, so the slope of a vertical line is said to be undefined.

When a line is vertical, the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-values for all points on the line are equal, so the denominator of the slope formula will be «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»0«/mn»«/mstyle»«/math». Division by «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»0«/mn»«/mstyle»«/math» is undefined, so the slope of a vertical line is said to be undefined.

Determine the slope of the line shown.

To determine the slope, first select two identifiable points on the graph.
Next, determine the change in «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math» (the rise) and the change in «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» (the run) between two points.
Use the slope formula to determine the slope.
The slope of the line is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math».

Next, determine the change in «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math» (the rise) and the change in «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» (the run) between two points.
Use the slope formula to determine the slope.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»m«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mi»rise«/mi»«mi»run«/mi»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«msub»«mi»y«/mi»«mn»2«/mn»«/msub»«mo»-«/mo»«msub»«mi»y«/mi»«mn»1«/mn»«/msub»«/mrow»«mrow»«msub»«mi»x«/mi»«mn»2«/mn»«/msub»«mo»-«/mo»«msub»«mi»x«/mi»«mn»1«/mn»«/msub»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mn»8«/mn»«mo»-«/mo»«mn»2«/mn»«/mrow»«mrow»«mn»6«/mn»«mo»-«/mo»«mn»3«/mn»«/mrow»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mn»6«/mn»«mn»3«/mn»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»2«/mn»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»
The slope of the line is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math».
